Polymer(Korea), Vol.22, No.1, 56-63, January, 1998
고밀도 폴리에틸렌 공정 부산물 왁스의 Maleation 연구
A Study on the Maleation of Polyethylene Wax Obtained as By-product in a High Density Polyethylene Plant
초록
고밀도 폴리에틸렌 공정의 부산물로 생성되는 왁스 성분을 갖는 저분자량 폴리에틸렌 (low molecular weight polyethylene : LMP)의 고부가가치화를 위하여 극성기인 MAH (maleic anhydrlde)를 도입하는 maleation을 수행하였다. Maleation에 영향을 미치는 인자인 LMP, e단량체(MAH), 개시제, 반응온도, 반응시간이 MAH의 그라프트에 미치는 영향을 조사하였다. 개시제는 dicumy1 peroxide (DCP) > di-t-butyl peroxide (DTBP) ≥ benzoyl peroxide (BPO) )2,2-azobis-isobutyronitrile (,AIBN) 순으로 효과적이었다. LMP량에 대하여 개시제의 함량 2.5wt%까지는 그라프트율이 증가하였으나 그 이상이면 감소하였다 반응시간에 따른 그라프트율은 초기에는 급격히 증가한 뒤에 거의 일정한 값을 유지하였고, 반응 온도가 높아짐에 따라 그라프트율은 증가하는 경향을 나타내었다. 단량체인 MAH 함량이 증가함에 따라 초기에는 MAH 그라프트율은 급격히 증가하지만 4.5wt% 이후에는 일정한 값을 유지하였다. LMP피 기능화를 위한 수단으로는 maleation이 효과적이며, maleation된 LMP는 폴리머 알로이, 분산제 등으로의 응용이 기대된다.
To functionalize low molecular weight polyethylene (LMP) obtained as a by product in a high density polyethylene plant, LMP was grafted with maleic anhydride (MAH). The effects of maleation parameters such as amount of MAH, initiator, reaction time and temperature on the grafting MAH on to LMP were investigated. The efficiency of the initiator in maleation was in the following order:dicumyl peroxide (DCP)>di-t-butyl peroxide (DTBP) greater than or equal to benzoyl peroxide (BPO) > 2,2-azo-bis-isobutyronitrile (AIBN). The percent grafting increases initially with an increase In initiator content up to 2.5 wt% based on LMP and then decreases. It was observed that the percent grafting increased initially and then remained constant with increasing reaction time. With an increase in reaction temperature, the percent grafting increases. The percent grafting increases initially with an increase in monomer content up to 4.5 wt% based on LMP and then remains constant. It is expected that the maleation is an effective method for functionalization of LMP and LMP-g-MAH can be applied as a compatibilizer for polymer alloys and as a dispersing agent, etc.
- Baldwin FP, ver Strate G, Rubber Chem. Technol., 45, 834 (1972)
- Jones GD, "Chemical Reactions of Polymers," ed. by E.M. Fetters, p. 247, Interscience, New York (1964)
- Braun D, Eisenlhor U, Angew. Makromol. Chem., 55, 43 (1976)
- Severini F, Chim. Ind., 60, 743 (1978)
- Milnoura Y, Ueda M, Minozuna S, Oba M, J. Appl. Polym. Sci., 13, 1625 (1969)
- De Vito G, Lanzetta N, Maglio G, Malinconico M, Musto P, Palumbo R, J. Polym. Sci., 22, 1335 (1984)
- Air Products and Chemicals Inc., U.S. Patent, 5,434,215 (1995)
- Mitsui Petrochemical Co., U.S. Patent, 3,892,717 (1975)
- Jois YHR, Harrision JB, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., 36, 433 (1996)
- Gaylord NG, Mehta R, Mohan DR, Kumar V, J. Polym. Sci., 20, 481 (1982)
- Heinen W, Rosenmoller CH, Wenzel CB, Degroot HJ, Lugtenburg J, Vanduin M, Macromolecules, 29(4), 1151 (1996)
- Russell KE, J. Polym. Sci., 26, 2273 (1988)
- Eastman Chemical Co., U.S. Patent, 5,551,974 (1996)
- Mitsui Petrochemical Co., U.S. Patent, 4,315,863 (1982)
- Eastman Chemical Co., U.S. Patent, 5,420,303 (1995)
- Texaco Inc., U.S. Patent, 4,548,754 (1985)
- Mitsui Petrochemical Co., U.S. Patent, 4,039,560 (1977)
- Gaylord NG, Meta R, Mohan DR, Kumar V, J. Polym. Sci., 44, 1941 (1992)
- Vijaykumar MT, Reddy CR, Joseph KT, Eur. Polym. J., 21, 415 (1985)
- Sathe SN, Rao GS, Devi S, J. Appl. Polym. Sci., 53(2), 239 (1994)
- Ganzeveld KJ, Janssen LPBM, Polym. Eng. Sci., 2, 467 (1992)
- Gaylord NG, J. Macromol. Sci., 13, 235 (1975)
- Bovey FA, Schilling FO, ACS Adv. Chem. Ser.(169), 133 (1977)
- Munteanu D, J. Macromol. Sci., 27, 1395 (1990)
- Sheats JE, Carraher CE, Pittamn CU, "Metal Contaning Polymeric Systems," Plenum, New York (1985)