화학공학소재연구정보센터
Polymer(Korea), Vol.22, No.4, 559-569, July, 1998
PBS-PTMG Segmented Block Copolymer의 합성 및 분석
Synthesis and Characterization of PBS-PTMG Segmented Block Copolymer
초록
Poly(butylene succinate)(PBS)와 poly(tetramethylene glycol)(PTMG, Mn=2000)을 공중합하여 polyester-polyether segmented block copolymer를 합성하고 조성에 따른 열적 거동과 기계적 성질을 알아보았다. PBS 단일중합체의 융점은 115.2 ℃였으나 70 wt%의 PTMG가 공중합되면 융점이 83.0 ℃까지 내려감을 알 수 있었다. 시차주사열량계(DSC)로 측정된 ΔHf(heat of fusion)에서 구한 결정화도는 소프트세그먼트가 5∼21 %, 하드세그먼트가 53∼67 %정도의 값을 보였다. PBS 단일중합체의 절단강도는 37.3 MPa이었으나 PTMG가 첨가됨에 따라 점차 감소하여 PTMG함량이 70 wt%인 공중합물의 경우 24.0 MPa로 약 1/3정도가 감소하였다. 이에 비해 절단신도는 PBS 단일중합체가 100 %, 이 후 PTMG함량 증가에 따라 증가하여 PTMG함량이 70 wt%인 공중합물이 800 %로써 약 8배로 신도가 향상되었다. 일정 연신율로 연신시킨 후의 복원율에서는 PTMG 함량 40 wt% 공중합물에 비해 PTMG 함량이 70 wt%인 공중합물의 복원율이 약 2배 정도 증가하였다.
Polyester-polyether segmented block copolymers of poly(butylene succinate) (PBS) and poly(tetramethylene glycol) (PTMG, Mn = 2000) with various compositions were synthesized. Their thermal and mechanical properties were investigated. The melting point of PBS control was 115.2 ℃ and the melting point of the copolymer containing 70 wt% of PTMG was 83.0 ℃. Crystallinity of soft segment was 5∼21% and that of hard segment was 53∼67%. Breaking stress of PBS control was 37.3 MPa but decreased with increasing PTMG content. In the case of the copolymer containing 70 wt% of PTMG, breaking stress was 24.0 MPa. Contrary to the decreasing breaking stress, breaking strain increased from 100% for PBS control to 800% for the copolymer containing 70 wt% of PTMG. The shape recovery ratio of the copolymer containing 70 wt% PTMG was almost twice of that of the copolymer containing 40 wt% PTMG.
  1. Huang SJ, Edelman PG, "Degradable Polymers," p. 19, Chapman & Hall, London (1995)
  2. Kricheldorf HR, Macromolecules, 17, 2173 (1984) 
  3. Albertsson AC, Ljungquist O, J. Macromol. Sci.-Chem., A23, 411 (1986)
  4. Xiong CD, Cheng LM, Xu RP, Deng XM, J. Appl. Polym. Sci., 55(6), 865 (1995) 
  5. Youxin L, Kissel T, J. Control. Release, 27, 247 (1993) 
  6. Kim DK, Shin YS, Im SS, Yoo YT, Huh JR, Polym.(Korea), 20(3), 431 (1996)
  7. Huang F, Wang X, Li S, J. Macromol. Sci.-Chem., A28(2), 175 (1991)
  8. Boussias CM, Peters RH, Still RH, J. Appl. Polym. Sci., 25, 869 (1980) 
  9. Gilding DK, Reed AM, Polymer, 22, 499 (1981) 
  10. Nagata M, Kiyotsukuri T, Minami S, Tsutsumi N, Sakai W, Polym. Int., 39, 83 (1996) 
  11. Radder AM, Leenders H, van Blitterswijk CA, Biomaterials, 16, 507 (1995) 
  12. Schollenberger CS, "Polyurethane Technology," p. 207, John Wiley & Sons, New York (1969)
  13. "Annual Book of ASTM Standards," 08.01, 161 (1993)
  14. "Annual Book of ASTM Standards," 08.03, 470 (1993)
  15. van Krevelen DW, "Properties of Polymers," 3rd ed., p. 247, Elsevier Science Publishers, New York (1990)
  16. Slonecki J, Polymer, 31, 1464 (1990) 
  17. Song DK, Sung YK, J. Appl. Polym. Sci., 56(11), 1381 (1995) 
  18. Van Krevelen DW, "Properties of Polymers," 3rd ed., p. 118, Elsevier Science Publishers, New York (1990)
  19. Brandrup J, Immergut EH, "Polymer Handbook," 3rd ed., VI/p.78, John Wiley & Sons, New York (1989)
  20. Albertsson AC, Ljungquist O, J. Macromol. Sci.-Chem., A24, 977 (1987)
  21. "Annual Book of ASTM Standards," 09.01, 268 (1993)
  22. Bellinger MA, Sauer JA, Hara M, Macromolecules, 27(21), 6147 (1994) 
  23. Jung DW, Chun BC, J. Korean Fiber Soc., 34, 718 (1997)