Biotechnology and Bioengineering, Vol.50, No.5, 493-504, 1996
Development of Novel Perfusion Chamber to Retain Nonadherent Cells and Its Use for Comparison of Human Mobilized Peripheral-Blood Mononuclear Cell-Cultures with and Without Irradiated Bone-Marrow Stroma
Perfusion and static cultures of peripheral blood (PB) mononuclear cells (MNCs), obtained from patients following stem cell mobilization, were supplemented with interleukin-3 (IL-3), IL-6, granulocyte colony-stimulating factor (G-CSF), and stem cell factor (SCF) and compared with and without a preformed irradiated allogeneic bone marrow stromal layer. Perfusion cultures without a stromal layer effectively retained nonadherent cells through the use of a novel "grooved" perfusion chamber, which was designed with minimal mass transfer barriers in order to achieve a well-defined culture environment. The grooved chamber allowed easy and efficient culture inoculation and cell recovery. Average maximum expansion of CFU-GM (colony-forming unit granulocyte-macrophage) cells was observed on day 10 for all cultures. Perfusion cultures had a maximum CFU-GM expansion of 17- and 19-fold with and without a stromal layer, respectively. In contrast, static cultures had a maximum CFU-GM expansion of 18- and 13-fold with and without a stromal layer, respectively. Average long-term-culture initiating cell (LTC-IC) numbers on day 15 were 34% and 64% of input in stroma-containing and stroma-free perfusion cultures and 12% and 11% of input in stroma-containing and stroma-free static cultures, respectively. Thus, perfusion enhanced CFU-GM expansion and LTC-IC maintenance more for the stroma-free cultures than for stroma-containing cultures. This was surprising because analysis of medium supernatants indicated that the stroma-containing cultures were metabolically more active than the stroma-free cultures. In view of their equivalent, if not superior, performance compared to stroma-containing cultures, stroma-free perfusion cultures may offer significant advantages for potential clinical applications.
Keywords:PRIMITIVE HEMATOPOIETIC PROGENITORS;REDUCED OXYGEN-TENSION;UMBILICAL-CORD BLOOD;GROWTH-FACTORS;CD34+ CELLS;HUMAN STEM;EXPANSION;INVITRO;TRANSPLANTATION;MATURATION