화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.17, No.6, 684-690, November, 2000
Hydrodynamic Transition from Fixed to Fully Fluidized Beds for Three-Phase Inverse Fluidization
E-mail:
Hydrodynamic transition experiments, involving both visual observations and pressure measurements, were performed using a 127-mm diameter Plexiglas column for three-phase inverse fluidized beds of 5.8-mm polyethylene spheres. Observations of interest not hitherto reported include: (1) A marked hysteresis effect (even when starting from a loose-packed condition) between inverse fluidization and defluidization which disappears when a wetting agent is added to the downflowing water. (2) An initially abrupt decrease of the minimum fluidization voidage, epsilon (mf), followed by a gradual rise of epsilon (mf) with increasing superficial gas velocity U-g. (3) Lower values of epsilon (mf) for three-phase systems than for the corresponding two-phase (liquid-solid) fluidized beds because local agitation by the gas bubbles causes bed compaction near the minimum liquid fluidization velocity, U-lmf (4) U-lmf vs. U-g curves which, though they always show U-lmf decreasing as U-g increases, sometimes display concave-downward, sometimes concave-upward and sometimes S-shaped behavior.
  1. Briens CL, Ibrahim YAA, Margaritis A, Bergougnou MA, Chem. Eng. Sci., 54(21), 4975 (1999) 
  2. Briens CL, University of Western Ontario, Personal Communication (1997)
  3. Briens LA, Briens CL, Margaritis A, Hay J, AIChE J., 43(5), 1180 (1997) 
  4. Buffiere P, Moletta R, Chem. Eng. Sci., 54(9), 1233 (1999) 
  5. Chern SH, Fan LS, Muroyama K, AIChE J., 30, 288 (1984) 
  6. Chern SH, Muroyama K, Fan LS, "Hydrodynamics of Constrained Inverse Fluidezation and Semifluidization in a Gas-Liquid-Solid System," 74(th) AIChE Annual Meeting, New Orleans, LA (1981)
  7. Chern SH, Muroyama K, Fan LS, Chem. Eng. Sci., 38, 1167 (1983) 
  8. Choi HS, Shin MS, Korean J. Chem. Eng., 16(5), 670 (1999)
  9. Comte MP, Bastoul D, Hebrard G, Roustan M, Lazarova V, Chem. Eng. Sci., 52(21-22), 3971 (1997) 
  10. Ergun S, Chem. Eng. Prog., 48, 89 (1952)
  11. Fan LS, "Gas-Liquid-Solid Fluidization Engineering," Butterworth, Stoneham, MA (1989)
  12. Fan LS, Muroyama K, Chern SH, Chem. Eng. J., 24, 143 (1982) 
  13. Fan LS, Muroyama K, Chern SH, Chem. Eng. Sci., 37, 1570 (1982) 
  14. Gonzalez G, Ramirez F, Monroy O, Biotechnol. Lett., 14, 149 (1992) 
  15. Ibrahim YA, Briens CL, Margaritis A, Bergongnou MA, AIChE J., 42(7), 1889 (1996) 
  16. Ibrahim YAA, University of Western Ontario, Personal Communication (1997)
  17. Karamanev DG, Nikolov LN, AIChE J., 38, 1916 (1992) 
  18. Karamanev DG, Nikolov LN, AIChE J., 38, 1843 (1992) 
  19. Karamanev DG, Chavarie C, Samson R, Biotechnol. Bioeng., 57, 471 (1997)
  20. Kaul SN, Gadaraki SK, Chem. Eng. World, 15, 25 (1990)
  21. Krishnaiah K, Guru S, Sekar V, Chem. Eng. J., 51, 109 (1993) 
  22. Lee DH, Epstein N, Grace JR, "Models for Minimum Liquid Fluidization Velocity of Gas-Liquid Fluidized beds," Proceedings of 8(th) APCChE Congress, 1699 (1999)
  23. Legile P, Menard G, Laurent C, Thomas D, Bernis A, Intern. Chem. Eng., 32, 41 (1988)
  24. Nikolov L, Karamanev D, Can. J. Chem. Eng., 65, 214 (1987)
  25. Ramsay BA, Wang D, Chavarie C, Rouleau D, Ramsay JA, J. Ferment. Bioeng., 72, 495 (1991) 
  26. Shiomodiara C, Yushina Y, Kamata H, Komatsu H, Kumira A, Mabu O, Tanak Y, "Process for Biological Treatment of Waste Water in Downflow Operation," U.S. Patent, 4,256,573 (1981)
  27. Tarmy BL, Coulaloglou CA, Chem. Eng. Sci., 47, 3231 (1992) 
  28. Tsuchiya K, Nakanishi O, Chem. Eng. Sci., 47, 3347 (1992) 
  29. Wright PC, Raper JA, Chem. Eng. Technol., 19(1), 50 (1996) 
  30. Zhang JP, Epstein N, Grace JR, Zhu J, Trans IChemE, 73(Part A), 347 (1995)
  31. Zhang JP, Epstein N, Grace JR, Powder Technol., 100(2), 113 (1998)