Korean Journal of Rheology, Vol.11, No.2, 128-134, June, 1999
자성 γ-Fe2O3 및 CrO2 입자 분산액의 유변특성 연구
Rheological Characteristics of Magnetic γ-Fe2O3 and CrO2 Particle Suspension
초록
본 논문에서는 자성입자인 막대 모양의 γ-Fe2O3와 CrO2 분산액에 대한 유변학적 거동을 조사하였다. 특히 입자의 농도와 전단 속도의 변화에 따른 자성 입자 분산액의 점도 거동을 살펴봄으로써 분산액의 미세구조 상태 및 입자의 배향에 영향을 주는 입자의 모양이 점성 소모에 미치는 영향을 조사하였는데, 평균장(mean field) 이론과 Mooney식을 통해 분산액의 점도 거동을 해석하였다. 본 연구에서 사용한 모든 자성입자 분산액의 본성 점도가 희박 분산액의 수력학 이론으로부터 얻는 값보다 큰 것을 알 수가 있었는데, 이러한 사실은 분산액내에 자성입자의 고유한 인력에 기인하여 분산 용매를 내포하고 있는 덩어리(flocs)의 존재를 뒷받침하고 있다.
Rheological characterization was examined for two different types of magenetic particle (rod-like γ-Fe2O3, CrO2) suspension in this study. The measured suspension viscosity (viscosity vs. concentration or shear rate) is used to obtain the dependence of viscous energy dissipation on the microstructural states of magnetic particle dispersions as will as the microstructural shape effects which are related to magnetic particle orientation. The empirical formulas from mean field theory and the Mooney equation are used to relate suspension viscosity to particle concentration. Intrinsic viscosities of these two different types of rod-like magnetic particle suspensions are found to exceed the prediction of hydrodynamic theory for dilute suspensions and support the existence of flocs containing signigicant amounts of immobilized suspending medium due to native attraction forces among particles in the microstructures.
- Bate G, Proc. IEEE, 74, 1515 (1986)
- Nagashiro W, Tsunoda T, J. Appl. Polym. Sci., 25, 2961 (1980)
- Yang MC, Scriven LE, Macosko CW, J. Rheol., 30, 1015 (1986)
- Kanai H, Amari T, Rheol. Acta, 34(3), 303 (1995)
- Gokturk H, Maki K, J. Magn. Magn. Mater., 154, 279 (1996)
- Navarrete RC, Scriven LE, Macosko CW, J. Colloid Interface Sci., 180(1), 200 (1996)
- Choi HJ, Park YD, Frattini PL, Jhon MS, J. Appl. Phys., 75(10), 5579 (1994)
- Kwon TM, Frattini PL, Sadani LN, Jhon MS, Colloids Surf., 80, 47 (1993)
- Jhon MS, Kwon TM, Choi HJ, Karis TE, Ind. Eng. Chem. Res., 35(9), 3027 (1996)
- Kwon TM, Jhon MS, Choi HJ, Bull. Korean Chem. Soc., 18, 767 (1997)
- Karis TE, Jhon MS, J. Appl. Phys., 64, 5843 (1988)
- Karis TE, Jhon MS, Colloids Surf., 53, 393 (1991)
- Kwon TM, Jhon MS, Choi HJ, Karis TE, Colloids Surf., 80, 39 (1993)
- Kwon TM, Choi HJ, Jhon MS, J. Magn. Soc. Jpn., 18(S1), 253 (1994)
- van der Vorst B, van den Ende D, Aelmans NJJ, Mellema J, Phys. Rev. E, 56, 3119 (1997)
- Krieger IM, Dougherty TJ, Trans. Soc. Rheol., 3, 137 (1959)
- Mooney M, J. Colloid Sci., 6, 162 (1951)
- Macosko CW, Rheology: Principles, Measurements and Applications, VCH Publishers, New York, p. 425-474 (1994)
- Brenner H, Int. J. Multiph. Flow, 1, 195 (1974)
- Simha R, J. Phys. Chem., 44, 25 (1940)
- Leal LG, Hinch EJ, J. Fluid Mech., 46, 685 (1971)
- Frisch HL, Simha R, "The Viscosity of Colloidal Suspensions and Macromolecular Solutions," in Rheology: Theory and Applications, ed. F.R. Eirich, 1, 525-613, Academic Press, New York (1956)
- Farris RJ, Trans. Soc. Rheol., 12, 281 (1968)
- Barnes HA, Hutton JF, Walters K, "An Introduction to Rheology," Elsevier, New York (1989)
- Kwon TM, Jhon MS, Choi HJ, Mater. Chem. Phys., 49, 225 (1997)
- Smith TL, Bruce CA, J. Colloid Interface Sci., 72, 13 (1979)
- Kwon TM, Jhon MS, Choi HJ, J. Mol. Liquids, 75, 115 (1998)
- Hunter RJ, Foundations of Colloid Science, vol. 1; Clarendon Press: Oxford (1989)