화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.1, 104-110, February, 2001
Polypropylene/Ethylene-α-Olefin 공중합체 블렌드의 물성
Properties of Polypropylene/Ethylene-α-Olefin Copolymer Blends
E-mail:
초록
내충격성 폴리프로필렌(PP)을 제조하기 위하여 homo PP와 block PP(에틸렌이 약 8 wt% 공단량체로 포함된 PP 공중합체)에 에틸렌-α-올레핀 공중합체인 ethylene-propylene rubber (EPR)과 ethylene-octene rubber (EOR)을 첨가하여 각 블렌드의 물성 변화를 살펴보았다. Homo PP 블렌드에서는 EOR의 충격보강 효과가 EPR보다 더 우수하였고 block PP 블렌드에서는 EPR의 충격보강 효과가 EOR 보다 더 우수하였다. 이것은 SEM에 의한 형태학적 관찰 결과 EPR나 EOR와 사용한 PP (homo, block)간의 상용성의 차이에 의한 것으로 해석되었다. 블렌드의 인장강도는 PP의 종류와 관계없이 rubber의 함량이 30 wt%까지는 EPR과 EOR이 거의 동일한 값을 나타내었고 그 이상에서는 EOR이 EPR에 비하여 더 높은 값을 나타내었다. 블렌드의 손실탄성율 측정 결과 rubber의 T(g)가 저온으로 이동한 것으로 나타났는데 이는 block PP(BPP)가 EOR이나 EPR와 상당히 좋은 상용성을 갖고 있음을 나타낸다.
In order to improve the impact strength of polypropylene (PP), ethylene-α-olefin copolymers such as ethylene-propylene (EPR) and ethylene-octene rubber (EOR) were blended with two kinds of PP (homo and block PP), and the changes of mechanical and rheological properties were studied. The effect of rubber on the impact strength showed that EPR was superior to EOR in the blend of homo PP, whereas EOR was superior to EPR in the blend of block PP. This result was interpreted in terms of differences in the compatibility between the rubbers and PP, which was observed by SEM. The tensile strength of the blends was comparable for both EPR and EOR up to 30 wt% rubber content, independent of PP. For rubber content of above 30 wt%, however, the tensile strength of EOR was higher than that of EPR. According to the loss modulus measurements of the blends, the T(g) of the rubber was lowered. This indicates that block PP (BPP) was compatible with EOR and EPR.
  1. Paul DR, Newman S, "Polymer Blends", Academic Press, New York (1978)
  2. Utracki LA, "Polymer Alloys and Blends", Hanser Publeshers, New York (1989)
  3. Gabriele MC, Plastics Tech., June, 58 (1992)
  4. Tomas S, Prd'homme RE, Polymer, 33, 4260 (1992) 
  5. Char K, Brown HR, Deline VR, Macromolecules, 26, 4163 (1993)
  6. Premphet K, Horanont P, Polymer, 41(26), 9283 (2000) 
  7. van der Wal A, Verheul AJJ, Gaymans RJ, Polymer, 40(22), 6057 (1999) 
  8. Pukanszky B, Tudos F, Kallo A, Bodor G, Polymer, 30, 1339 (1989)
  9. D'Orazio L, Greco R, Martusceli E, Ragosta G, Polym. Eng. Sci., 23, 489 (1983) 
  10. Fortelny I, Kamenicka D, Kovar J, Angew. Makromol. Chem., 164, 125 (1988) 
  11. Liu NC, Baker WE, Polymer, 35(5), 988 (1994) 
  12. Liu NC, Xie HQ, Baker WE, Polymer, 34, 4680 (1993) 
  13. Choudhary V, Varma HS, Varma IK, Polymer, 32, 2534 (1991) 
  14. Plawky U, Wenig W, Macromol. Symp., 102, 183 (1996)
  15. Gupta AK, Ratnam BK, Srinivasan KR, J. Appl. Polym. Sci., 45, 1303 (1992) 
  16. Karger-Kocsis J, Kiss L, Polym. Eng. Sci., 27, 254 (1987) 
  17. Jancar J, Dianselmo A, Dibenedetto AT, Kucera J, Polymer, 34, 1684 (1993) 
  18. Bartczak Z, Galeski A, Martuscelli E, Janik H, Polymer, 26, 1843 (1985) 
  19. Martuscelli E, Silvestre C, Bianchi L, Polymer, 24, 1458 (1983) 
  20. Thayer AM, Chem. Eng. News, 11, September 11, 15 (1995)