화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.2, 174-180, April, 2001
탄산칼슘의 결정형태가 H2S와의 반응성에 미치는 영향
Influence of Polymorphs of Calcium Carbonate on Their reactivity with H2S
E-mail:
초록
황화수소를 제거하기 위하여 탄산칼슘의 sulfidation을 연구하였다. 특히, 탄산칼슘의 결정형태와 반응온도에 따른 탈황능력에 관하여 연구하였다. 탄산칼슘의 열처리반응은 입자의 결정형태에 영향이 있었으며, aragonite의 경우 다른 두 결정형태에 비하여 낮은 온도에서 열처리반응이 일어남을 알 수 있었다. 또한 vaterite와 aragonite의 경우 열처리반응보다 낮은 온도에서 calcite로 결정화 반응이 일어남을 알 수 있었다. calcite의 경우 H2S와의 sulfidation에 있어서 반응온도에 미치는 영향은 없었으나 vaterite와 aragonite의 반응온도는 sulfidation에 미치는 영향이 매우 컸다. 본 연구의 결과로부터, 탄산칼슘의 sulfidation 반응에 있어서 vaterite와 aragonite의 반응 최적 온도는 각각 800∼850 ℃와 750 ℃ 이었다.
The sulfidation reaction of calcium carbonate to remove H2S ws investigated. Expecially, the effects of polymorphs of calcium carbonate and reaction temperature on the sulfur capture were determined. It was found that the caicination reaction of calcium carbonate was influenced by polymorphs of calcium carbonate. The calcination temperature of aragonite was lower than the calcium carbonate. In calcination reaction, vaterite and aragonite were converted to calcite at a lower temperature compared to the calcination temperature. In the sulfidation of calcite with H2S, the reaction temperature on the sulfur capture had no effect. But in case of vaterite and aragonite, the reaction temperature was found to have a significant effect on the sulfidation reaction. From these results, the optimum temperatures of sulfidation reaction of vaterite and aragonite were determined to bo at 800∼850 ℃ and 750 ℃, respectively.
  1. Fenouil LA, Lynn S, Ind. Eng. Chem. Res., 34(7), 2343 (1995) 
  2. Ray HS, J. Thermal. Anal., 24, 35 (1982) 
  3. Garn PD, Thermochim. Acta, 40, 85 (1980)
  4. Borgwardt RH, Bruce KR, AIChE J., 32, 239 (1986) 
  5. Satterfield CN, Feakes F, AIChE J., 5, 115 (1959) 
  6. Gallagher PK, Johnson DW, Thermochim. Acta, 14, 255 (1976) 
  7. Caldwell KM, Gallagher PK, Johnson DW, Thermochim. Acta, 18, 15 (1977) 
  8. Salvador AR, Calvo EG, Aparicio CB, Thermochim. Acta, 143, 339 (1977) 
  9. Lyu SG, Sur GS, Kang SH, HWAHAK KONGHAK, 35(2), 186 (1997)
  10. Lyu SG, Ryu SO, Park YH, Sur GS, HWAHAK KONGHAK, 36(2), 262 (1998)
  11. Ogino T, Suzuki T, Sawada K, J. Cryst. Growth, 100, 159 (1990) 
  12. Yasue T, Kogima Y, Arai Y, Gypsum Lime, 247, 471 (1994)
  13. Lyu SG, Park YH, Sur GS, Polym.(Korea), 21(2), 296 (1997)
  14. Lyu SG, Sur GS, Polym. Symp., 39 (1997)
  15. Kawaguchi H, Hirai H, Sakai K, Sera S, Nakajima T, Ebisawa Y, Koyama K, Colloid Polym. Sci., 270, 1176 (1992) 
  16. Nakamae K, Nishiyama S, Yamashiro J, Fujimura Y, Urano A, Tozaki Y, Matsumoto T, Nihon-settyakukyoukaishi, 21, 414 (1985)
  17. Lyu SG, Ryu SO, Park YH, Rhew JH, Sur GS, HWAHAK KONGHAK, 36(4), 543 (1998)
  18. Kojima Y, Endo N, Yasue T, Arai, J. Ceram. Soc. Jpn., 103, 1282 (1995)
  19. Xyla AG, Koutsoukos PG, J. Chem. Soc.-Faraday Trans., 85(10), 3165 (1989) 
  20. Fenouil LA, Lynn S, Ind. Eng. Chem. Res., 35(4), 1024 (1996)