Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.2, 199-204, April, 2001
표면 처리에 따른 활성탄소 표면 및 Cr(Ⅵ) 흡착 특성에 관한 영향
Effects of Surface Treatment of Activated Carbon on Its Surface and Cr(Ⅵ) Adsorption Characteristics
E-mail:
초록
본 연구에서는 활성탄소 표면 처리가 기상 및 액상 흡착 거동에 미치는 영향에 대하여 고찰해 보았다. 산, 염기 표면 처리 용액으로서 35 wt% HCl과 35 wt% NaOH 용액을 각각 사용하였으며, pH, 표면 산- 염기도, 그리고 FT-IR 측정을 통하여 표면 특성 변화를 살펴보았다. 활성탄소의 Cr(Ⅵ) 이온 흡착 거동은 상온에서 5 mg/l 농도의 조건으로 고찰하였다. 또한 비표면적, 미세기공 부피, 그리고 미세기공도를 포함한 N2 등온 흡착 특성은 BET식과 Boer의 t-plot을 이용하여 확인하였다. 본 실험 결과, Cr(Ⅵ) 이온의 흡착은 처리하지 않은 활성탄소에 비하여 산성 용액으로 처리했을 때 더 효과적이었으며, 이는 표면 산도(또는 산성 관능기) 증가의 영향으로 나타났다. 반면, 염기성 용액으로 처리한 활성탄소에서는 Cr(Ⅵ) 이온 흡착에 현저한 영향을 미치지 못하였으며, 이는 표면 처리에 따른 활성탄소의 비표면적 및 기공 부피의 감소에 의한 것으로 사료된다.
In this work, the effect of surface treatments on activated carbons (ACs) has been studied in the context of gas and liquid adsorption behaviors. The chemical solutions used in this experiment were 35 wt% sodium hydroxide, and these were used for the acidic and basic treatments, respectively. The surface properties have been determined by pH, acid-base values, and FT-IR. The adsorption isotherms of Cr(Ⅵ) ion on activated carbons have been studied with the 5 mg/l concentration at ambient temperature. N2 adsorption isotherm characteristics, which include the specific surface area, micro pore volume, and microporosity, were determined by BET and Boer's t-plot methods. In case of the acidic treatment on activated carbons, it was observed that the adsorption of Cr(Ⅵ) ion was more effective due to the increase acid value (or acidic functional group) of activated carbon surfaces. However, the basic treatment on activated carbons was caused no significant effects, probably due to the decreased specific surface area and total pore volume.
- Kruk M, Jaroniec M, Gadkaree KP, J. Colloid Interface Sci., 192(1), 250 (1997)
- Cusumano JA, Thomas JM, Zamaraev KI, "Perspectives in Catalysis", Blackwell, Oxford (1992)
- Bansal RC, Donnet JB, Stoeckli F, "Active Carbon", Marcel Dekker, New York (1988)
- Greg SJ, Sing KSW, "Adsorption, Surface Area, and Porosity", Academic Press, New York (1982)
- Khalili NR, Pan M, Sandi G, Carbon, 38, 573 (2000)
- Donnet JB, Qin RY, Park SJ, Ryu SK, Rhee BS, J. Mater. Sci., 28, 2950 (1993)
- Park SJ, Kim KD, Lee JR, J. Korean Ind. Eng. Chem., 9(6), 920 (1998)
- Onganer Y, Temur C, J. Colloid Interface Sci., 205(2), 241 (1998)
- Suzuki M, Carbon, 32, 577 (1994)
- Park SJ, Park BJ, Ryu SK, Carbon, 37, 1223 (1999)
- Bautista TL, Rivera UJ, Ferro GMA, Moreno CC, Carbon, 32, 1381 (1959)
- Manuel PC, Jose MMM, Rosa TM, Water Res., 29, 2174 (1995)
- Weng CH, Wang JH, Huang CP, Water Sci. Technol., 35, 55 (1997)
- Aggarwal D, Goyal M, Bansal RC, Carbon, 37, 1989 (1999)
- Boehm HP, Adv. Catal., 16, 179 (1966)
- Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
- Dubinin MM, "Progress in Surface and Membrane", Academic Press, New York (1975)
- Barrett EP, Joyner LC, Halenda PH, J. Am. Chem. Soc., 73, 373 (1951)
- Park SJ, "Interfacial Forces and Field: Theory and Applications", ed. J.P. Hsu, Marcel Dekker, New York (1999)
- Kessler RW, Kessler W, Oelkrug D, Borath R, Fuchs R, Galvanotechnik, 87, 3590 (1996)
- Ende D, Kessler W, Oelkrug D, Fuchs R, Electrochim. Acta, 38, 2577 (1993)
- Huang CP, Hsieh YS, Park SW, Corapciogiu MO, Bowers AR, Elliott HA, "Chemical Interactions Between Heavy Metal Ions and Hydrous Solids: Metals Speciation, Separation, and Recovery", eds. J.W. Patterson and R. Passino, Lewis Pub., Chelsea (1987)
- Pittman CU, He GR, Wu B, Gardner SD, Carbon, 35, 317 (1997)
- Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouqurol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
- Mahajan P, Youssef A, Walker PL, Sep. Sci. Technol., 13, 487 (1978)
- Huang CP, Stumm W, J. Colloid Interface Sci., 43, 409 (1973)
- Goswamee RL, Sengupta P, Bhattacharyya KG, Dutta DK, Appl. Clay Sci., 13, 21 (1998)