화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.2, 199-205, April, 2001
졸-겔법에 의한 다공성 알루미나 미분체 제조에 관한 연구: I.물과 알콕시드의 비가 알루미나 미분체의 물리적 특성에 미치는 영향
Synthesis of Porous Al2O3 Particles by Sol-Gel Method: I. The Effect of [H2O]/[Al-alkoxide] Ratios on the Physical Property of Alumina Particles
E-mail:
초록
본 연구에서는 물에 대한 알루미늄 알콕시드의 빠른 반응속도와 제조된 입자의 형태를 조절하기 위하여 혼합용매법을 이용하여 다공성 알루미나 입자를 제조하였다. 공정변수로 선정한 알루미늄 알콕시드에 대한 물의 비가 2-8의 반응조건에서는 구형의 입자가 제조되었으나, 물과 알콕시드의 비가 15이상에서는 불규칙한 형태의 침전물이 제조되었다. 알콕시드에 대한 물의 비가 증가함에 따라 제조된 미분체의 결정형태는 비정질의 Al(OH)3로부터 화학조성이 AlO(OH)인 의사보헤마이트로 변하였으며, 600 ℃에서 하소한 시료의 기공구조는 잉크병모양에서 열린 실린더 형으로 변화하였다. 그리고 600 ℃에서 하소한 시료의 경우 521-865 ㎡/g 정도의 비교적 넓은 비표면적과 6.6-14nm 정도의 기공경을 나타냈으며, 1,100 ℃에서 하소한 시료는 35-120 ㎡/g의 비표면적을 나타냈다.
Porous alumina particles were prepared using a mixed solvent to control the reaction rate of Al-alkoxide and the particle shape. Monodispersed alumina particles with submicron size were obtained in the condition of [H2O]/[Al-alkoxide] ratio of 2-8 in the mixed solvent. In contrast, precipitation of agglomerates and large powders were obtained in the condition of [H2O]/[Al-alkoxide]≥15. As the increase of the [H2O]/[Al-alkoxide] ratio, the crystal structure of as-prepared particles was continuously varied from amorphous Al(OH)3 to pseudo-boehmite with chemical composition of AlO(OH). From BET analysis, the pore structure of the particles calcined at 600℃ had been changed from ink-bottle to open cylinder shape with increasing of the [H2O]/[Al-alkoxide] ratio. The specific surface area and pore diameter of samples calcined at 600℃ were 521-865 m(2)/g and 6.6-14 nm respectively. The specific surface area of samples calcined at 1,100℃ was 35-120 m(2)/g respectively.
  1. Dessau RM, Schlenker JL, Higgins JB, Zeolites, 10, 522 (1990) 
  2. Davis ME, McCusker LB, Baerlocher C, Merrouche A, Kessler H, Nature, 352, 320 (1991) 
  3. Satterfield CN, "Heterogeneous Catalysis in Practice," McGraw-Hill (1980)
  4. Astier M, Bertrand A, Bianchi D, Villemin B, "Preparation of Catalyst," Ed. Delmon, B., Jacobs, P.A. and Poncelot, G., Elsevier, Brussels, 315 (1976)
  5. Takai Y, Ueno A, Kotera, Bull. Chem. Soc. Jpn., 56, 2941 (1983) 
  6. Yoldas BE, Am. Ceram. Soc. Bull., 54, 286 (1975)
  7. Hwang UY, Lee SG, Koo KK, Park HS, Yoo SJ, Yoon HS, HWAHAK KONGHAK, 37(3), 355 (1999)
  8. Song KC, Kang Y, HWAHAK KONGHAK, 35(6), 805 (1997)
  9. Jean JH, Ring TA, Am. Ceram. Soc. Bull., 65, 1574 (1986)
  10. Ogihara T, Yanagawa T, Ogage N, Yoshida K, J. Ceram. Soc. Jpn., 101, 315 (1993)
  11. Hwang UY, Ph.D. Dissertation, Sogang Univer., Seoul, Korea (1998)
  12. Hwang UY, Seo JS, Lee JW, Choi JH, Park HS, Kim YR, Yoo SJ, Yoon HS, HWAHAK KONGHAK, accepted
  13. Brunauer S, Deming LS, Deming WS, Teller E, J. Am. Chem. Soc., 62, 1723 (1940) 
  14. de Boer JH, "The Structure and properties of Porous Materials," ed. Everett, D.H. and Stone, F.S., Butterworths, London (1958)
  15. Gadsden JA, "Intrared Spectra of Minerals and Related Inorganic Compounds," Batterworths, Reading, Mass (1975)
  16. Nakamoto K, "Infrared and Raman Spectra of Inorganic and Coordination Compounds," Wiley, New York (1978)
  17. Chane-Ching JY, Klein LC, J. Am. Ceram. Soc., 71, 86 (1988) 
  18. Leonard AJ, Cawelaert FV, Fripiat JJ, J. Phys. Chem., 71, 695 (1967)