Biotechnology and Bioengineering, Vol.51, No.3, 260-270, 1996
Membrane Adsorption Characteristics Determine the Kinetics of Flow-Through Transductions
Retrovirus-mediated gene transfer is currently limited by random Brownian motion of the retrovirus. This limitation can be overcome by flowing the retrovirus solution through a porous membrane that supports the target cells, leading to a significant increase in the transduction efficiency. This procedure is termed "flow-through transduction." In this study, we characterized the effects of the fluid flowrate and the influence that membrane characteristics have on the flow-through transduction procedure. The transduction efficiencies increased with flowrate until a plateau was reached at average flow velocities exceeding 0.3 cm/h for flow times of 3 to 4 h, using a collagen-coated depth (COL) membrane. A correlation between the optimal time for maximal gene transfer using flow-through transductions and the optimal time for maximal virus activity on the membrane was found, suggesting that the membrane adsorption capacity for virus determined the amount of gene transfer that could occur. Membrane adsorption characteristics were further investigated using two different membrane types : a track-etched polyester screen (PE) membrane and the COL membrane. Flow-through transductions using the PE and COL membranes showed that a high level of gene transfer could be attained using the COL membrane while the PE membrane gave much lower transduction efficiencies. The addition of the polycation polybrene (PB) changed these results markedly, making transductions achieved on the PE membrane similar in number to those obtained on the COL membrane. Since PB is believed to influence the virus adsorption to PE membrane, these results further support the conclusion that the increase in gene transfer achieved by the flow-through transduction procedure is due to virus adsorption to the membrane. The flow-through transduction procedure thus leads to colocalization of the viral vector and the target cell that in turn leads to a high transduction efficiency.