화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.8, 903-909, December, 2000
TiO2(anatase)에 담지된 Vanadium-Phosphorus 산화물 촉매상에서 시클로펜텐의 선택적 산화반응
Selective Oxidation of Cyclopentene on TiO2(anatase)-supported Vanadium-Phosphorus Oxide Catalysts
E-mail:
초록
V-P(vanadium-phosphorus)/TiO2(anatase) 촉매들 위에서 무수말레인산(MA) 및 무수프탈산(PA)으로의 시클로펜텐 선택적 산화반응을 연구하였다. 3.5 wt%의 담지량을 가진 촉매들에서 V-P 활성 성분들은 얇은 층으로서 작은 표면적의 TiO2(anatase) 표면위에 잘 분산되었으며, 적절한 P/V 원자비를 가진 촉매들은 시클로펜텐의 선택적 산화를 위하여 효과적인 것으로 발견되었다. 이 촉매들에서, P(phosphorus)함량이 증가됨에 따라 산화 활성은 감소되었다. MA로의 선택성은 P 함량 증가에 따라 증가하다가 0.5의 P/V 원자비에서 최고값을 나타낸 후 감소되었으며, PA로의 선택성은 연구된 0∼1.1의 P/V 원자비 범위에서 점차적으로 증가하였다. 원하는 생성물들인 MA와 PA로의 선택성들의 합에 의해 결정된 최고값은 약 50%로서 0.7의 P/V원자비를 가진 촉매에서 나타났다. 다른 한편, 0.7의 P/V 원자비에서 담지량의 증가는 산화 활성과 원하는 생성물들로의 선택성에서의 미시적인 감소를 결화했다. 이에 더하여, P/V 원자비에 기인한 효과들이 시클로펜텐의 선택적 산화반응을 위한 반응 메카니즘과 연결하여 논의하였다.
The selective oxidation of cyclopentene to maleic anhydride (MA) and phthalic anhydride (PA) has been studied using V-P(vanadium-phosphorus) oxide catalysts supported by TiO2(anatase). In the catalysts with 3.5 wt% V-P loading, V-P active components were effectively dispersed on a low surface area of TiO2(anatase) forming thin layers. The catalysts with appropriate P/V ratios were effective in the selective oxidation of cyclopentene. As the content of P (phosphorus) in the active component of the catalysts was increased, the oxidation activity was decreased, but the selectivity of MA was increased to a maximum at the P/V atomic ratio of 0.5 before decrease. For P/V atomic ratios of 0∼1.1, however, the selectivity of PA was gradually increased. A maximum value determined by the sum of the selectivities of MA and PA, was obtained at the P/V atomic ratio of 0.7 and ca.(????) 50%. On the other hand, the increased loading of active components in the P/V atomic ratio of 0.7 resulted in minor decreases of the oxidation activity and the selectivity of the desired products, MA and PA. In addition, the effects due to P/V atomic ratios were discussed in connection with the reaction mechanism for the selective oxidation of cyclopentene.
  1. Schleppinghoff B, Schulwitz B, Erdol Kohle Erdgas Petrochem., 38, 209 (1985)
  2. Griesbaum K, Honicke D, "Ullmanns Encyclopedia of Industrial Chemistry," 5th ed., A8, 227, VCH Verlagsgesellschaft, Heidelberg (1987)
  3. Bockler R, Cordes G, Smolen H, Chem. Ing. Tech., 62, 447 (1990) 
  4. Griesbaum K, Honicke D, Erdol Kohle Erdgas Petrochem., 35, 102 (1986)
  5. Yang HS, Kim YH, J. Korean Ind. Eng. Chem., 7(5), 888 (1996)
  6. Kim YH, Yang HS, Korean J. Chem. Eng., 17(3), 357 (2000)
  7. Bond GC, Tahir SF, Appl. Catal., 71, 1 (1991) 
  8. Bond GC, "Handbook of Heterogeneous Catalysis," Vol. 2, ed. by G. Ertl, H. Knozinger and J. Weitkamp, 752, VCH, Weinheim (1997)
  9. Saleh RY, Wachs IE, Appl. Catal., 31, 87 (1987) 
  10. Nikolov V, Klissurski D, Anastasov A, Catal. Rev.-Sci. Eng., 33, 319 (1991)
  11. Dias CR, Portela MF, Catal. Rev.-Sci. Eng., 39(3), 169 (1997)
  12. Centi G, Burattini M, Trifiro F, Appl. Catal., 32, 353 (1987) 
  13. Centi G, Trifiro F, Catal. Today, 3, 151 (1988) 
  14. Centi G, Nieto JL, Pinelli D, Trifiro F, Ind. Eng. Chem. Res., 28, 400 (1989) 
  15. Busca G, Centi G, J. Am. Chem. Soc., 111, 46 (1989) 
  16. Centi G, Trifiro F, Chem. Eng. Sci., 45, 2589 (1990) 
  17. Bond G, Bosch H, Ommen JGV, Kip BJ, Appl. Catal., 22, 361 (1986) 
  18. Roozeboom F, Mittelneijer-Hazeleger MC, Moulijn JA, Medema J, de Beer VHJ, Gellings PJ, J. Phys. Chem., 84, 2783 (1980) 
  19. Dias CR, Portela MF, Bond GC, J. Catal., 157(2), 344 (1995) 
  20. Centi G, Nieto JL, Pinelli D, Trifiro F, Ungarelli F, "new Developments in Selective Oxidation" ed. by G. Centi and F. Trifiro, 635, Elsevier Science Publishers B.V., Amsterdam (1990)
  21. Deo G, Wachs IE, J. Catal., 146(2), 335 (1994)