화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.8, 944-951, December, 2000
자율적 조습재료의 제조와 그의 특성평가
Preparation and Characterization of the Humidity Self-control Materials
E-mail:
초록
수용액상의 Sol-Gel 반응과 액정주형법을 이용하여 세공크기가 3.0∼7.5 범위로 제어된 mesoporous silica를 제조하고 자율적 조습재료로써의 응용에 대해 검토하였다. 수용액상의 Sol-Gel 반응에서는 pH 3.0∼5.5 범위에서 세공크기 2.8∼7.8 nm인 시료를 합성할 수 있었고 본 연구에서 고안된 역적정법에 의해 세공크기 4.0∼5.5 nm인 시료의 세공용적을 0.8 cc/g 이상, 겔점에서의 규산소다 용액의 농도를 25%이상으로 증가시킬 수 있었다. 비표면적과 세공용적은 소성온도에 반비례하였는데 내구성을 고려한 적정 소성온도는 600 ℃부근인 것으로 판단된다. 액정주형법에서는 계면활성제의 농도 25%, pH 10.0∼11.0 범위에서 세공크기 4.1∼7.0 nm, 세공용적 0.9 cc/g 이상인 시료를 합성할 수 있었는데 이 시료들은 Hexagonal 형태의 균일한 세공이 잘 발달해 있었다. 결과적으로, 수용액상의 Sol-Gel 반응과 액정주형법에 의해 제조된 시료 공히, 수증기 흡·방습량이 80%이상이고 상대습도 40∼70%범위에서 대부분의 흡·방습이 일어나는 것으로 보아 자율적 조습재료로써의 응용가능성이 매우 클 것으로 판단된다. 또한, 환경습도범위에서의 흡·방습량 비교에 의하면 수용액상의 Sol-Gel 반응시료가 보다 자율적 조습능력이 우수한 것으로 평가되었다.
Mesoporous silicas having an average pore size of 3.0∼7.5 nm have been synthesized via the aqueous sol-gel reaction and Liquid Crystal Templating (LCT). The application of the silicas as a humidity self-control material was examined. It was possible to prepare the specimens with a pore size of 2.8∼7.8 nm by the sol-gel reaction in the pH range of 3.0∼5.5. By using the back titration method, which was designed for this study, the pore volume of the specimen with a pore size of 4.0∼5.5 nm and the concentration of a sodium silicate solution at the gel-point were increased to over 0.8 cc/g and 25%, respectively. Both the surface area and the pore volume were inversely proportional to the calcination temperature. The optimal calcination temperature concerning a durability was found at around 600 ℃. In the 25% concentration of surfactant solution, by the LCT method, it was possible to prepare the specimens with a uniform hexagonal-type pore size of 4.1∼7.0 nm and the pore volume of over 0.9 cc/g in the pH range of 10.0∼11.0. Measurements of the water vapor adsorption-desorption for the specimens, prepared by the above two methods, indicated that they were over 80%. The adsorption-desorption occurred mostly at the relative humidity between 40% and 70%. In this regard, we have concluded that the specimens could be used for a humidity self-control material. In addition, the specimen yielded by the sol-gel reaction showed a superior ability of humidity self-control than the one by the LCT.
  1. Fujida M, JETI, 41(3), 111 (1993)
  2. Tomura S, Maeda M, Inukai K, Ohashi F, Suzuki M, Shibasaki Y, 機能材料, 17(2), 22 (1997)
  3. 新井親夫, 水谷孝志, 花川忠己, 左納良樹, 紛體工學會誌, 20, 115 (1983)
  4. Ramsay JDF, Avery RG, Br. Ceram. Proc., 38, 275 (1986)
  5. Brinker CJ, Keefer KD, Schaefer DW, Ashley CS, J. Non-Cryst. Solids, 48, 47 (1982) 
  6. Brinker CJ, Scherer GW, "Sol-Gel Science," 9, 526, Academic Press, New York (1990)
  7. 足立今也, 紫山恭日, 南努, "先端材料の新技術 : 多孔化技術," ed. 服部信, 2, 113, 化工同人, Tokyo (1987)
  8. Park DG, Polym. Sci. Technol., 8(3), 248 (1997)
  9. Brinker CJ, Scherer GW, "Sol-Gel Science," 3, 99, Academic Press, New York (1990)
  10. Iler RK, "The Chemistry of Silica," 3, 105, Wiley, New York (1979)
  11. Brinker CJ, Scherer GW, J. Non-Cryst. Solids, 70, 301 (1985) 
  12. Zarzycki J, Prassas M, Phalippou J, J. Mater. Sci., 17, 3371 (1982) 
  13. Brinker CJ, Scherer GW, "Ultrastructure Processing of Glasses, Ceramics and Composites," 43, Wiley, New York (1984)
  14. Brinker CJ, Schere GW, "Sol-Gel Science : Structure of Porous Gels," 9, 529, Academic Press, New York (1990)
  15. 腹部信, "多孔性セラミックスの 開發應用," 3, CMC, Tokyo (1984)
  16. Brinker CJ, Schere GW, Roth EP, J. Non-Cryst. Solids, 72, 345 (1985) 
  17. Legrand AP, Adv. Colloid Interface Sci., 56(7), 738 (1990)
  18. Bertoluzza A, Fagnano C, Morelli MA, Gottardi V, Guglielmi, J. Non-Cryst. Solids, 48, 117 (1982) 
  19. Brinker CJ, Haaland DM, J. Am. Ceram. Soc., 66, 758 (1983) 
  20. Roy R, J. Am. Ceram. Soc., 52, 344 (1964) 
  21. Brinker CJ, Kirkoatrick RJ, Tallant DR, Bunker BB, Montez B, J. Non-Cryst. Solids, 99, 418 (1988) 
  22. Zhao XS, Lu GQ, Millar GJ, Ind. Eng. Chem. Res., 35(7), 2075 (1996)