Polymer(Korea), Vol.25, No.3, 367-374, May, 2001
열처리 온도와 시간에 따른 나노탄소섬유/PVDF 복합재의 전자파 차폐 특성
Effectiveness of Electromagnetic Interference Shielding of Carbon Nanofiber/Poly(vinylidene fluoride) Composites as a Function of Heat Treatment Temperature and Time
E-mail:
초록
여러 가지 탄소함유가스로부터 Ni 및 Ni-Cu의 합금촉매를 사용하는 화학증착반응에 의해 제조해 나노탄소섬유를 충전재로 하고, poly(vinylidene fluoride)(PVDF)를 매트리스로 이용하여 복합재를 제조하여 전자파 차폐성능을 조사해보았다. 전자파 차폐용 충전재의 중요한 물성치인 나노탄소섬유의 전기전도도는 10000 psi 압력에서 4.2∼22.4 S/cm 사이에 분포하였다. 나노탄소섬유/PVDF 복합재의 전기전도도는 0.22∼2.46 S/cm 사이에 값을 보였고, 전자파 차폐성능은 2∼13 dB 범위를 나타내었다. 나노탄소섬유의 전기전도도는 열처리 온도와 시간의 증가에 따라 높아지지만, 얻어지는 복합재의 전기전도도는 초기에 급속한 증가 후 일정해지는 경향을 나타내었다. 복합재의 전자파 차폐성능은 열처리 온도와 시간의 증가에 따라 증가하다가 감소하였고, 복합재의 전기전도도에 비례하였다. 열처리가 진행됨에 따라 나노탄소섬유의 비표면적이 감소하였으며, 전자파 차폐성능에 충전재의 전기전도도 외에 비표면적이 중요한 변수임을 알 수 있었다.
The electromagnetic interference(EMI) shielding effectiveness (SE) of poly(vinylidene fluoride) (PVDF) composites was investigated using carbon nanofiber fillers prepared by catalytic chemical vapor deposition of various carbon-containing gases over Ni and Ni-Cu catalysts. The electrical conductivity of carbon nanofiber which was regarded as the key property of filler for the application of EMI shielding ranged from 4.2 to 22.4 S/cm at a pressure of 10000 psi. The electrical conductivity of carbon nanofiber/PVDF composites ranged from 0.22 to 2.46 S/cm and the EMI SE of those was in the range of 2 similar to 13 dB. The electrical conductivity of carbon nanofibers increased with the increase in heat treatment temperature and time, while the electrical conductivity of the composites increased rapidly at the initial heat treatment and then approached a certain value with the further increase of heat treatment. The SE of the composites showed a maximum at the medium heat treatment and was proportional to the electrical conductivity of the composites. It was concluded that the specific surface area of carbon nanofibers decreased with the continual heat treatment and the specific surface area of filler was an important factor for the SE of the composites.
- Shaffer MSP, Windle AH, Adv. Mat., 11, 937 (1999)
- Joo J, MacDiarmid AG, Epstein AJ, Proceedings of the antec. '95, 2, 1672 (1995)
- Bushko WC, Stokes VK, Wilson J, Proceedings of the Antec. '99, 2, 1499 (1999)
- Chandrasekhar P, Naishadham K, Synth. Met., 105, 115 (1999)
- Makela T, Pienimas S, Taka T, Jussila S, Isotalo H, Synth. Met., 85, 1335 (1997)
- Makela T, Sten J, Hujanen A, Isotalo H, Synth. Met., 101, 707 (1999)
- Rodriguez NM, Chambers A, Baker RT, Langmuir, 11(10), 3862 (1995)
- Anderson PE, Rodriguez NM, J. Mater. Res., 14(7), 2912 (1999)
- Fan YY, Li F, Cheng HM, Su G, Yu YD, Shen ZH, J. Mater. Res., 13(8), 2346 (1998)
- Ahn CC, Ye Y, Ratnakumar BV, Witham C, Bowman RC, Fultz B, Appl. Phys. Lett., 73(23), 3378 (1998)
- Kim MS, Woo WJ, Song HK, Lim YS, Lee JC, J. Korean Ceramic Society, 37(4), 345 (2000)
- Kim MS, Lee BO, Woo WJ, An KH, J. Korean Ceramic Society, 37(9), 921 (2000)
- Kim MS, Rodriguez NM, Baker RTK, J. Catal., 131, 60 (1991)
- Samyn J, Deceuninck P, Proceedings of the Antec. '86, 282 (1986)
- Larry R, Proceedings of the Antec. for Portable and Wireless Electronics, 121 (1998)
- Bahl OP, Shen Z, Lavin JG, Ross RA, "Carbon Fibers", 3rd Ed., eds. by J.B. Donnet, T.K. Wang, J.C.M. Peng, and Serge Rebouillat, Marcel Dekker, Inc., New York (1998)