화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.3, 385-390, May, 2001
Poly(L-lactic acid)와 Poly(oxyethylene-co-oxypropylene)을 포함한 생분해성 Poly(ester-ether) 형 블록 공중합체의 항혈전성과 표면구조
Anti-thrombogenicity and Surface Structure of a Poly(ester-ether) Consisting of Poly(L-lactic acid) and Poly(oxyethylene-co-oxypropylene)
E-mail:
초록
oxyethylene/oxypropylene 공중합체의 존재하에 L-lactide를 중합시킴에 의해 poly(L-lactic acid) (PLLA) (A)와 polyether(B)로 이루어진 A-B-A block copoly(ester-ether)를 합성하였으며, 이들 블록 공중합체는 세그멘트를 도입함에 의해 PLLA에 유연성이 부여되었고, 표면에서의 미세상분리 구조로 인한 항혈전성의 개질을 확인하기 위하여 AFM사진을 관찰한 결과, PLLA와 비료하여 블록 공중합체는 필름표면의 요철성이 현저하게 저하하여 매끄러운 것을 확인하였으며 따라서, 표면의 요철이 항혈전성의 증가와 깊은 관계가 있음을 확인하였다.
The A-B-A type block copoly(ester-ether)s consisting of poly(L-lactic acid) (PLLA)(A) and poly(oxyethylene-co-oxypropylene)(B) were prepared to improve the mechanical properties and hydrolyzability of PLLA. The block copolymers showed an improved flexibility due to the incorporation of the soft segments. Then, the same copolymer has an improved anti-thrombogenicity probably due to the specific microphase separation structure in the surface. The AFM of the film of the block copolymer revealed that the surface was quite flat in comparison with that of PLLA. Therefore, the flatness of the surface may be related with the increased anti-thrombogenicity of the copolymer film.
  1. Frazza EJ, Schmitt EE, Biomed. Mater. Res. Symp., 1, 43 (1971)
  2. Gilding DK, Reed AM, Polymer, 20, 1459 (1979) 
  3. Gogolewski S, Pennings AJ, Makromol. Chem. Rapid Commun., 4, 213 (1983) 
  4. Fredericks RJ, Melveger AJ, Dolegiewitz J, J. Polym. Sci. Polym. Phys. Ed., 22, 57 (1984) 
  5. Alexander H, Parsons JR, Strauchler ID, Corcoran SF, Gona O, Mayott C, Weis AB, Orthop. Rev., 10, 41 (1981)
  6. Echeverria E, Jimenez J, Surgery, 131, 1 (1970) 
  7. Sander HJ, Chem. Eng. News, 31 (1985)
  8. Okada H, Ogawa Y, Yashiki K, Chem. Abstr., 103, 166162 (1985)
  9. Iwa T, Hirano M, Yamashita R, Sakatoku M, Igaku No Ayumi, 128, 655 (1984)
  10. Iwa T, Hirano M, Yamashita R, Sakatoku M, Igaku No Ayumi, CA 101, 43491g (1984)
  11. Dardik H, Dardik I, Laufman H, Am. J. Surg., 121, 656 (1971) 
  12. Eling B, Gogolewski S, Pennings AJ, Polymer, 23, 1587 (1982) 
  13. Jamshidi K, Hyon SH, Nakamura T, Ikada Y, Shimizu Y, Teramatsu T, "Biological and Biomechanical Performance of Biomaterials", eds. by P. Christel, A. Meunier, and A.J.C. Lee, p. 277, Elsevier, Amsterdam (1986)
  14. Kalb B, Pennings AJ, Polymer, 21, 607 (1980) 
  15. Chu CC, "Biomaterials", eds. by G.D. Winter, D.F. Gibbons, and H. Plenk Jr., p. 781, John Wiley, New York (1982)
  16. Miller RA, Brady JM, Cutright DE, J. Biomed. Mater. Res., 11, 711 (1977) 
  17. Casey DJ, Huffman KR, U.S. Patent, 4,438,253 (1984)
  18. Vitalis EA, U.S. Patent, 2,917,410 (1959)
  19. Vitalis EA, Chem. Abstr., 54, 7173d (1960)
  20. Kitao T, Kimura Y, Ohtani N, Matsuzaki Y, Yabuuchi K, Jpn. Kokai Tokyo Koho, 21, 1504 (1989)
  21. Cha Y, Pitt CG, Biomaterials, 11, 108 (1990) 
  22. Lee CW, Kimura Y, Kobunshi Ronbun Shu, 52, 11 (1995)
  23. Lee CW, Kimura Y, Bull. Chem. Soc. Jpn., 69, 1787 (1996) 
  24. Lee CW, Kimura Y, Sen-I Gakkaishi, 52, 8 (1996)
  25. Carothers WH, Dorouah GL, Natta FJV, J. Am. Chem. Soc., 54, 761 (1932) 
  26. Okada H, Ogawa Y, Yashiki K, Japan Patent, 60,100,516 (1985)