Applied Biochemistry and Biotechnology, Vol.90, No.1, 67-73, 2001
Nonproteolytic cleavage of aspartyl proline bonds in the cellulosomal scaffoldin subunit from Clostridium thermocellum
Previous work from our group [Morag (Morgenstern), E., Bayer, E. A., and La med, R. (1991), Appl. Biochem. Biotechnol. 30, 129-136] has demonstrated an anomalous electrophoretic mobility pattern for scaffoldin, the 210-kDa cellulosome-integrating subunit of Clostridium thermocellum. Subsequent evidence [Morag, E., Bayer, E. A., and Lamed, R. (1992), Appl. Biochem. Biotechnol. 33, 205-217] indicated that the effect could be attributed to a nonproteolytic fragmentation of the subunit into a defined series of lower-molecular-weight bands. In the present work, a recombinant segment of the scaffoldin subunit was employed to determine the site(s) of bond breakage. An Asp-Pro sequence within the cohesin domain was identified to be the sensitive peptide bond. This sequence appears quite frequently in the large cellulosomal proteins, and the labile bond may be related to an as yet undescribed physiological role in the hydrolysis of cellulose by cellulosomes.
Keywords:cellulosome;multienzyme complex;cohesin domain;Asp-Pro bond;cellulases;Clostridium thermocellum