Biotechnology and Bioengineering, Vol.52, No.3, 364-372, 1996
Online Monitoring of Intracellular ATP Concentration in Escherichia-Coli Fermentations
A method was developed to provide a real-time measurement of intracellular adenosine 5’-triphosophate (ATP) concentrations in growing Escherichia coli. The bacteria to be monitored must first be modified by inserting the cDNA for firefly luciferase expressed from a constitutive promoter. Such a construct leads to constant specific activity of firefly luciferase during both the lag phase and exponential growth. When the luciferase substrate, D-luciferin, is added to the medium, ATP within the cells is utilized in the luciferase-catalyzed reaction that produces light. The light is carried from the bioreactor to a computer-based detector by an optical fiber. The detected per cell light emission varies during exponential growth. Analysis of cytoplasm extracts shows that this variance is related to changes in the ATP concentration, which ranges from 1 to 6 times the literature value for K-M. Experimental analyses demonstrated that inner filter effects are not a significant factor affecting the use of this system. The method was tested in a benchtop fermenter at cell densities above 13 g/L dry cell weight. A correction factor based on the accumulated light data is calculated and used in real time to account for consumption of luciferin from the culture broth by the light producing reaction. Dissolved oxygen concentrations must be kept above 15% of air saturation to ensure constant light output, but no detectable increase in oxygen demand is seen. The method does not significantly affect growth or production rates.