Biotechnology and Bioengineering, Vol.53, No.3, 290-295, 1997
Monte-Carlo Simulation of the Enzymatic Lysis of Yeast
The overall reaction in the enzymatic lysis of yeast takes place in three major steps : (i) the two-layer wail is digested, (ii) the cell bursts under the osmotic pressure difference to release its intracellular material, and (iii) the intracellular material is digested by the enzymes still present in the solution. The first and third steps are continuous processes, adequately described by Michaelis-Menten kinetic models. The second step is a discrete event, statistical in nature. A model of engineering value should effectively bridge the gap between the two continuous processes (first and third steps). In this work, Monte Carte simulations are used to identify a suitable function that captures the statistical nature of cell rupture and represents the rate of release of intracellular material. It is shown that the two-parameter beta distribution function serves this purpose most effectively. Comparisons with experimental results indicate that the cell rupture ratio is a widely distributed statistical function.