Journal of Applied Polymer Science, Vol.79, No.13, 2360-2379, 2001
Modeling and experimental studies of emulsion copolymerization systems. I. Experimental results
A systematic experimental and modeling study of several emulsion copolymerization systems has been performed, and will be reported in a series of papers. Ten binary and three ternary copolymerizations involving styrene, methyl methacrylate, butyl acrylate, butadiene, vinyl acetate, acrylic acid, and ethylene were studied varying polymerization temperature, monomer composition, water to monomer ratio, initiator and emulsifier concentrations. Conversion, particle size, copolymer composition, and gel content were measured at several reaction times. The goal of this series of papers is to assess our quantitative understanding of emulsion copolymerization expressed in the form of a comprehensive mathematical model applied to monomers widely used in industry. In this first paper of the series, a global comparison of the experimental results is made. It is observed that the gel content is higher in systems containing butyl acrylate and butadiene, and smaller in systems containing methyl methacrylate. Larger particle numbers are obtained for lattices containing acrylic acid and butadiene. It is also shown that, for most of the systems, integration of the simple Mayo-Lewis equation is adequate to explain the drift in copolymer composition observed experimentally.