화학공학소재연구정보센터
Journal of Power Sources, Vol.95, No.1-2, 135-140, 2001
Development of a VRLA battery with improved separators, and a charge controller, for low cost photovoltaic and wind powered installations
There are many applications and uses for which it is more advantageous to use solar installations than to extend the electrical network and connect to it. This kind of applications are numerous covering from isolated houses to telephone repeaters and the like. These kind of applications share some common characteristics like being located in remote not easy accessible areas, require relatively low power for operation, and being difficult to maintain. Up to now the use of photovoltaic systems, no matter the impressive growth they are experimenting, suffer from some drawbacks, mainly related with the life expectations and reliability of such systems, and as a consequence of the cost of these systems, when calculated on a lifetime basis. To try to contribute to solve these problems, a project partially founded by the European Commission, has been carried out, with the main objective of increasing the life of these systems, and consequently to make them more attractive from the point of view of cost on a lifetime basis for consumers. Presently, the life of PV systems is Limited by its weakest component, the battery. Battery failure modes in PV applications, are related with well known phenomena like corrosion, but also due to the special nature of this installations, with other factors like corrosion and growth in the upper part of the group, induced by the development of acid stratification inside the battery, with the more prone standard flooded types now in major use, and to a lesser extent the new valve regulated lead acid (VRLA) types beginning to be used. The main objectives of this project, were: to develop a new glass microfibre separator material, capable of minimizing acid stratification inside the battery. To develop a new VRLA battery, with a life duration of 800 cycles on cycling at 60% DOD and partial state of charge (PSOC) conditions, To develop a new charge regulator, that takes into account the condition of the battery in the near term, to modify its setting charging point. The fourth objective was the design and implementation of a PV/wind demonstration system, to test all the PV components under real conditions. The project has been successful, having achieved a life increase of 50%, moving achievable life from previous 500-750 cycles for the new battery and system. (C) 2001 Elsevier Science B.V. All rights reserved.