화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.123, No.1, 57-67, 2001
Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: Improved catalytic activity through statistical effects and cooperativity in successive generations
Dendrimeric polyphenylsulfides, -selenides, and -tellurides are prepared in high yield using propyloxy spacers to connect the phenylchalcogeno groups to the dendrimeric core. The selenides and tellurides catalyze the oxidation of bromide with hydrogen peroxide to give positive bromine species that can be captured by cyclohexene in two-phase systems. The corresponding sulfides show no catalytic activity. The increase in the rate of catalysis followed statistical effects for 1, 6, and 12 phenyltelluro groups. However, the increase in the rate of catalysis exceeds statistical contributions for the first few generations with 1, 3, 6, and 12 phenylseleno groups and suggested cooperativity among phenylseleno groups. The increase in catalytic rate was lost upon replacing all but one phenylseleno group with phenoxy groups. On the basis of H2O2 consumed, the dendrimer with 12 phenylseleno groups has a turnover number of >60 000 mol of H2O2 consumed per mole of catalyst.