- Previous Article
- Next Article
- Table of Contents
Journal of the American Chemical Society, Vol.123, No.4, 517-525, 2001
Structure/energy correlation of bowl depth and inversion barrier in corannulene derivatives: Combined experimental and quantum mechanical analysis
Synthesis of a series of corannulene derivatives with varying bowl depths has allowed for a study correlating the structure (bowl depth) and the energy of bowl inversion. Substituents placed in the peri positions are repulsive and flatten the bowl, thus causing a decrease in the bowl inversion barrier. Conversely, annelation across the peri positions causes a deepening of the bowl, thus an increase in the bowl inversion barrier. Barriers between 8.7 and 17.3 kcal/mol have been measured, and their structures have been calculated using a variety of ab initio methods. The energy profile of an individual corannulene derivative is assumed to fit a mixed quartic/quadratic function from which an empirical correlation of bowl depth and inversion barrier that follows a quartic function is derived. Structure/energy correlations of this type speak broadly of the nature of enzymatic and catalytic activation of substrates.