HWAHAK KONGHAK, Vol.21, No.3, 143-150, June, 1983
구형물질의 미이크로파 냉동건조에 관한 수치해석
A Numerical Study on Microwave Freeze-Drying of Spherical Material
초록
마이크로파를 열원으로 하는 냉동건조의 이론적 해석을 위하여 구형물질을 모델로 수치해석을 행하였다. 건조층과 냉동층의 비정상상태 열 및 물질 수지식의 해를 Crank-Nicolson방법으로 구하였으며 쇠고기의 물성치를 수치해석에 사용하였다.
수치실혐의 결과 건조시간은 전기장력(electric field strength)의 증가에 따라서 감소하였으며 진공조의 압력이 5∼10 mmHg일 때 최소 건조시간을 나타내었다. 이와 아울러 진공조의 온도, 수증기의 분압 및 시료의 반지름 등도 건조시간에 직접 영향을 미친다는 사실을 확인하였다.
수치실혐의 결과 건조시간은 전기장력(electric field strength)의 증가에 따라서 감소하였으며 진공조의 압력이 5∼10 mmHg일 때 최소 건조시간을 나타내었다. 이와 아울러 진공조의 온도, 수증기의 분압 및 시료의 반지름 등도 건조시간에 직접 영향을 미친다는 사실을 확인하였다.
Microwave is used as th heat source for freeze-drying process and the unsteady-state behavior of spherical model is analysed numerically. the Crank Nicolson method is used to solve the transient energy and mass transfer equations in both ice core and dried layer. A mathematical model is used to simulated the freeze-drying of beef meat.
The drying time decreases as the electric field stength increases. The drying time decreases as the pressure of vacuum chamber increases to 5-10 mmHg, at which the minimum drying time occurs. And further increase of the vacuum chamber pressure results in the increase of the drying time. It has also been found that ambient temperature, partial pressure of water vapor in the vacuum chamber, and sample radius directly affect the dryng time.
The drying time decreases as the electric field stength increases. The drying time decreases as the pressure of vacuum chamber increases to 5-10 mmHg, at which the minimum drying time occurs. And further increase of the vacuum chamber pressure results in the increase of the drying time. It has also been found that ambient temperature, partial pressure of water vapor in the vacuum chamber, and sample radius directly affect the dryng time.