화학공학소재연구정보센터
Langmuir, Vol.17, No.2, 489-498, 2001
Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: Surface-analytical characterization and resistance to serum and fibrinogen adsorption
Poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) is a member of a family of polycationic PE G-grafted copolymers that have been shown to chemisorb on anionic surfaces, including various metal oxide surfaces, providing a high degree of resistance to protein adsorption. PLL-g-PEG-modified surfaces are attractive for a variety of applications including sensor chips for bioaffinity assays and blood-contacting biomedical devices. The analytical and structural properties of PLL-g-PEG adlayers on niobium oxide (Nb2O5), tantalum oxide (Ta2O5), and titanium oxide (TiO2) surfaces were investigated using reflection-absorption infrared spectroscopy (RAIRS), angle-dependent X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The combined analytical information provides clear evidence for an architecture with the cationic poly(L-lysine) attached electrostatically to the oxide surfaces (charged negatively at physiological pH) and the poly(ethylene oxide) side chains extending out from the surface. The relative intensities of the vibrational modes in the RAIRS spectra and the angle-dependent XPS data point to the PLL backbone being located directly at and parallel to the oxide/polymer interface, whereas the PEG chains are preferentially oriented in the direction perpendicular to the surface. Both positive and negative ToF-SIMS spectra are dominated by PEG-related secondary ion fragments with strongly reduced metal (oxide) intensities pointing to an (almost) complete coverage by the densely packed PEG comblike grafts. The three different transition metal oxide surfaces with isoelectric points well below 7 were found to behave very similarly, both in respect to the kinetics of the polymer adlayer adsorption and properties as well as in terms of protein resistance of the PLL-g-PEG-modified surface. Adsorption of serum and fibrinogen was evaluated using the OWLS optical planar waveguide technique. The amount of human serum adsorbed on the modified surfaces was consistently below the detection limit of the optical sensor technique used(<1-2 ng cm(-2)), and fibrinogen adsorption was reduced by 96-98% in comparison to the nonmodified (bare) oxide surfaces.