화학공학소재연구정보센터
Rheologica Acta, Vol.40, No.1, 49-59, 2001
Specific rheology - morphology relationships for some blends containing LCPs
For the blend melts of isotropic polysulfone (PSF) and LC polyester (PES), differing in viscosity more than 10 times, the flow curves with maxima were observed in cone and plate geometry. The low shear rate branch is located near the PSF flow curve, and the high shear rate branch is close to the PES flow curve. At high strains, the formation of the ring-like morphology of the blend sample, accompanied by appearance of maximum on flow curve, was registered. The scaling analysis of the reasons for the ring morphology formation was based on stretching of the large, low-viscous LC droplet, embedded to the high-viscous polymer matrix, in a homogeneous shear field. It was shown that, if the critical Taylor radius is not exceeded, the droplet may form the closed torus. Under strong flows, the PSF melt manifests the "spurt effect", consisting of a drastic increase of the shear rate when the critical value of the shear stress is reached. The pattern of the blend flow curves with maxima may be explained by a vanishing PSF input to the total shear stress, inherent for blends, while the PES melt continues to be in a liquid state and, consequently, is responsible for the blend viscosity at the high shear rates. The presence of regular heterogeneities in the blend in the form of LC rings may initiate the rupture of the entanglements network of the matrix PSF (close to LC rings) under strong shear flows. The appearance of the low-viscous "cracks" at the critical shear stress will diminish the contribution of the PSF to the blends rheological response.