- Previous Article
- Next Article
- Table of Contents
HWAHAK KONGHAK, Vol.23, No.4, 205-212, August, 1985
PVC를 이용한 관능기를 갖는 탄소 제조
Preparation of the Carbon with Acidic Functional Group from Poly-vinyl Chloride
초록
PVC로부터 활성탄을 얻는데는 탈염화수소단계와 고온에서 활성화시켜 비표면적을 크게하는 단계로 구성된다. 후자의 단계에는 많은 에너지가 필요하고 수율도 낮으므로 본 연구에서는 이 단계를 거치지 않고 PVC를 탈염화수소시켜 얻은 char에 산성관능기를 부착시켜 이용해 보고자 하였다.
PVC를 탈염화수소시키는 두가지 방법, 직접 열을 가하는 열분해 방법과 가성소다 용액을 이용하는 방법을 비교해 보았다. 전자의 방법이 후자의 방법보다 방향족 구조를 더 많이 갖긴 했으나, 어느 방법을 이용하든 PVC에서 얻어진 char는 기본적으로 polyene구조를 가졌다. 가성소다 용액을 이용한 탈염화수소 반응은 2차 반응이였으며, 이 반응의 활성화 에너지는 21.8 Kcal/mole이였다.
탈염화수소된 PVC의 char를 질산으로 표면처리할 때 질산농도 3-7 N에서는 3-4 m-equivalent HNO3/g-char의 질산이 흡착되었다. 이 질산처리된 char의 비표면적은 8 m2/g을 넘지 않았으나, 납이온에 대한 흡착력은 질산처리된 비표면적이 큰 활성탄 못지 않게 좋은 흡착력을 보였다.
PVC를 탈염화수소시키는 두가지 방법, 직접 열을 가하는 열분해 방법과 가성소다 용액을 이용하는 방법을 비교해 보았다. 전자의 방법이 후자의 방법보다 방향족 구조를 더 많이 갖긴 했으나, 어느 방법을 이용하든 PVC에서 얻어진 char는 기본적으로 polyene구조를 가졌다. 가성소다 용액을 이용한 탈염화수소 반응은 2차 반응이였으며, 이 반응의 활성화 에너지는 21.8 Kcal/mole이였다.
탈염화수소된 PVC의 char를 질산으로 표면처리할 때 질산농도 3-7 N에서는 3-4 m-equivalent HNO3/g-char의 질산이 흡착되었다. 이 질산처리된 char의 비표면적은 8 m2/g을 넘지 않았으나, 납이온에 대한 흡착력은 질산처리된 비표면적이 큰 활성탄 못지 않게 좋은 흡착력을 보였다.
In the production of activated carbon from PVC, there may be two stage process : the first stage is the dehydrochlorination of PVC to obtain char rich in carbon and the second is the activation of char at high temperature to obtain high surface area. The latter process requires high energy consumption and the yield is very low. Therefore, instead of this process, the method to attach acidic functional groups on the surface of the char was used.
Compared were two methods of dehydrochlorination of PVC : thermal decomposition by heating PVC directly and dehydrochlorination by using sodium hydroxide solution. While the former method gave more aromatic structures to the char than the latter, the char obtained by either method had basically polyene structures. Dehydrochlorination by using NaOH solution showed second order reaction and the activation energy of 21.8 Kcal/mole.
The PVC char was oxidated with HNO3 solution of 3N-7N concentrations and showed the ion exchange capacity of 3-4 m-equivalent HNO3/g-char. Although the surface area of the char was not over 8 m2/g-char, its adsorption capacity of lead ion was nearly the same as that of activated carbon with large surface area treated with HNO3 solution.
Compared were two methods of dehydrochlorination of PVC : thermal decomposition by heating PVC directly and dehydrochlorination by using sodium hydroxide solution. While the former method gave more aromatic structures to the char than the latter, the char obtained by either method had basically polyene structures. Dehydrochlorination by using NaOH solution showed second order reaction and the activation energy of 21.8 Kcal/mole.
The PVC char was oxidated with HNO3 solution of 3N-7N concentrations and showed the ion exchange capacity of 3-4 m-equivalent HNO3/g-char. Although the surface area of the char was not over 8 m2/g-char, its adsorption capacity of lead ion was nearly the same as that of activated carbon with large surface area treated with HNO3 solution.