화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.69, No.2, 183-195, 2000
Effect of pH on the production of lipolyzed butter oil by a calf pregastric esterase immobilized in a hollow-fiber reactor: I. Uniresponse kinetics
A calf pregastric esterase immobilized in a hollow-fiber reactor was employed to hydrolyze milkfat, thereby producing a lipolyzed butteroil. The reaction kinetics can be modeled by a two-parameter model of the general Michaelis-Menten form based on a ping-pong bi-bi mechanism; the rate of enzyme deactivation can be modeled as a first-order reaction. The initial concentration of accessible glyceride bonds, [G](0), was estimated by complete saponification of the substrate butteroil as 2400 mM. An extra sum of squares test indicated that not only the parameters of the kinetic generalized Michaelis-Menten model, but also the deactivation-rate constant varied significantly with pH. The optimum pH, for lypolysis is near 6.0 at a temperature of 40 degrees C because at this pH the rate of deactivation of the esterase is minimized.