화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.69, No.3, 242-255, 2000
A systematic approach to the validation of process control parameters for monoclonal antibody production in fed-batch culture of a murine myeloma
A systematic approach to the validation of control ranges of control parameters for a cell culture process producing a monoclonal antibody is described. Specifically, the structure and functional activity of a monoclonal IgG1 antibody produced at the outer limits of numerical ranges of fed-batch culture control parameters such as pH and temperature were examined, with the aim of providing assurance that antibody produced under varying culture conditions was of consistent quality based on a carefully defined set of specifications. An experimental design was created using a half-fractional factorial design for fed-batch culture incorporating half of the thirty two possible combinations of five selected control parameters at high and low revels. Statistical analysis of all data gathered from the study allowed an assessment of the effects of the process control parameters at either high or low outer limits on fed-batch culture response variables such as growth rate and specific antibody productivity. Measured values for the responses of growth rate and specific antibody productivity throughout this study ranged from 0.22-0.44 d(-1) and 6.4-32 mu g monoclonal antibody/10(6) cells/d respectively. Analytical characterisation of monoclonal antibody purified from each fed-batch culture considered the purity, structure and biological activity of the glycoprotein. All antibody preparations were identical to each other and to the current antibody reference standard or control. Glycosylation analysis of certain samples from the study demonstrated that the distribution of glycoforms of the antibody was not affected by the varying process control conditions of the fed-batch cultures.