화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.73, No.5, 331-337, 2001
Stable sol-gel microstructured and microfluidic networks for protein patterning
We demonstrate the formation of micropatterned sol-gel structures containing active proteins by patterning with polydimethylsiloxane (PDMS) microchannels. To transport sol solution efficiently into the hydrophobic PDMS microchannels, a hydrophilic-hydrophobic block copolymer was used to impart hydrophilicity to the PDMS microchannels. Poor adhesion of the micropatterned gel structure onto glass slides was improved by treating the glass surface with a polymeric substrate. To minimize cracks in the gel microstructure, hybrid matrices of interpenetrating organic and inorganic networks were prepared containing the reactive organic moieties polyvinylalcohol or polyvinylpyrrolidone. Retention of biochemical activity within the micropatterned gel was demonstrated by performing immunobinding assays with immobilized immunoglobulin G (IgG) antibody. The potential application of microfluidics technology to immobilized-enzyme biocatalysis was demonstrated using PDMS-patterned microchannels filled with trypsin-containing sol-gels. This work provides a foundation for the microfabrication of functional protein chips using sol-gel processes.