화학공학소재연구정보센터
Biotechnology Letters, Vol.22, No.7, 539-545, 2000
Improved electrotransformation frequencies of Corynebacterium glutamicum using cell-surface mutants
The electrotransformation efficiency for homologously- and heterologously-derived plasmid DNA was determined for two families of Corynebacterium glutamicum strains derived from ATCC13059 (AS019 and auxotrophic, cell surface mutants MLB133 and MLB194) and ATCC13032 (parent strain and restriction-minus mutants RM3 and RM4), following their growth in LBG supplemented with glycine plus isonicotinic acid hydrazide (INH). Electrotransformation efficiencies of MLB133 were up to 100-fold higher than for strain ASO19 and, when using heterologously-derived plasmid DNA, MLB133 showed efficiencies comparable to or better than strains RM3 and RM4, demonstrating the relative importance of cell surface structures in impeding DNA uptake in C. glutamicum. Transmission electron microscopy analysis of cell surface structures showed that strain MLB133 has a thin cell wall relative to AS019 and growth in either glycine or INH further diminished its thickness. Both RM3 and RM4 were more sensitive to INH than ATCC13032 and growth in glycine plus INH further improved transformation efficiency. The mycolic acid composition of these strains is described and the impact of glycine and INH on this is reported.