화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.3, 340-345, June, 2001
Biofilter를 이용한 VOC 처리 특성 및 미생물 첨가에 의한 영향
VOC Treatment Characteristics using Biofilter and its Performance Enhancement with the Addition of Microorganisms
E-mail:
초록
본 실험에서는 실험실크기 biofilter에서 온도, bed length, 체류시간(가스흐름량), 농도, 적정 수분량 지역 등을 대상으로 toluene 분해 실험을 진행하였다. 본 실험에서의 온도의존성 결과로서, 저온보다 고온에서 효율이 더 상승하는 것으로 나타났으며, 최적의 효율을 나타내는 온도는 모든 농도에서 32-35℃임을 알 수 있었다. 가스흐름량 대비 제거효율은 도입되는 가스흐름량이 많아짐에 따라 감소하였으며, 가스흐름량에 따른 제거속도와 제거효율은 서로 상반되는 경향을 나타냈다. 도입농도 251 g/m(3) 이하에서는 0차 반응의 결과를 나타내었으며, 같은 체류시간에서 bed length가 길어짐에 따라 반응속도는 증가하였지만 지속적으로 증가하지는 않았다. 초기의 미생물 서식양식과 처리후의 서식양상을 비교하면, agglomeration으로 인해 투과 기공이 작아지면서 셀 자체의 증식활동이 저해됨으로써 제거효율이 저하된다는 것을 알 수 있었다. 그 외에 최적 수분 지역 실험을 통하여 bed length에 따른 반응속도를 고찰하였으며 cell의 CFU(Colony Forming Unit) 측정을 통해 최적수분지역이 cell의 증식활동에 미치는 영향을 고찰하였다.
In this study, the degradation of toluene by lab-scale biofilter inoculated with pseudomonas putida DK-1 was investigated with variation of the several environmental parameters, such as temperature, bed length, residence time (gas flow rate), concentration and optimal humidity zone. Removal efficiency increased as the operating temperature increased and the optimal temperature range to treat toluene gas was found to be 32-35 ℃. The effect of gas flow rate on toluene degradation was investigated at different gas flow rates of 20-100 ml/min. Increasing the gas flow rate showed an inverse effect on the elimination rate (ER) and the removal efficiency (RE). The removal efficiency was roughly constant and consequently the biodegradation rate was independent of concentration of toluene at the inlet load lower than 251 g/m(3). The optimal humidity dominance zone (40-60%) increased as bed length increased. The biodegradation rate of the toluene with respect to the bed length (3, 6, 9, 12 and 15 cm) increased up to 80 h but was then independent of the bed length after 80 h except for the 3 cm bed length.
  1. Ottengraf SPP, Van Den Oever AHC, Biotechnol. Bioeng., 25, 3089 (1983) 
  2. Kim DJ, Seon YH, Hwang KY, HWAHAK KONGHAK, 32(4), 541 (1994)
  3. Leson G, Winer AM, "Air and Waste Management Association,", 41, 1045 (1991)
  4. Joseph SD, Marc AD, Todd SW, "Biofiltration for Air Pollution Control," Lewis publishers (1999)
  5. Edward MT, Joseph D, "Water Environment Research Foundation," PROJECT 92-VOC-1 (1992)
  6. Zilli M, Converti A, Lodi A, Del Borghi M, Ferraiolo G, Biotechnol. Bioeng., 41, 693 (1993) 
  7. Chungsying L, Min-Ray L, Chenghaw C, J. Environ. Eng., 125, 775 (1999) 
  8. van Lith C, Leson G, Michelsen R, "Air & Waste Management Association,", 47, 37 (1997)
  9. Kiared K, Fundenberger B, Brzezinski R, Viel G, Heitz M, Ind. Eng. Chem. Res., 36(11), 4719 (1997) 
  10. Chung YC, Huang CP, Li CF, J. Environ. Sci. Health, 32, 1435 (1997)
  11. Zhao W, Rachard A, "Air & Waste Management," 96-WP87A.05.
  12. Elena A, Richard A, "Air & Waste Management," 96-WP87A.03.
  13. Bibeau L, Kiared K, Leroux A, Brzezinski R, Viel G, Heitz M, Can. J. Chem. Eng., 75(5), 921 (1997)