화학공학소재연구정보센터
Biotechnology Progress, Vol.16, No.2, 163-168, 2000
Glass transition temperatures and fermentative activity of heat-treated commercial active dry yeasts
Differential scanning calorimetry thermograms of various samples of commercial instant active dry yeasts revealed a clear glass transition typical of amorphous carbohydrates and sugars. The resulting glass transition temperatures were found to decrease with increasing moisture content. The observed glass curve was similar to that of pure trehalose, which is known to accumulate in large amounts in baker's yeast. The effect of heat treatment at various temperatures on the fermentative activity (as measured by the metabolic production of CO2) of dry yeast was studied. First-order plots were obtained representing the loss of fermentative activity as a function of heating time at the various temperatures assayed. Significant losses of fermentative activity were observed in vitrified yeast samples. The dependence of rate constants with temperature was found to follow Arrhenius behavior. The relationship between the loss of fermentative activity and glass transition was not verified, and the glass transition was not reflected on the temperature dependence of fermentative activity loss.