화학공학소재연구정보센터
Biotechnology Progress, Vol.17, No.2, 247-251, 2001
Stable genetic transformation of Eschscholzia californica expressing synthetic green fluorescent proteins
An efficient protocol is described for the stable genetic transformation of Eschscholzia californica (California poppy) using Agrobacterium tumefaciens as a vector. We have employed the disarmed A. tumefaciens LBA4404 encoding a synthetic green fluorescent protein reporter gene that is further controlled by an enhanced cauliflower mosaic virus 35S promoter. Stably transformed E. californica cells appear 3 weeks after initial cocultivation of A. tumefaciens with poppy leaves, stems, or roots. Transformed poppy calli were visualized by exposure to long-wave W or blue light and analyzed in detail by fluorescent microscopy and laser-scanning microscopy. Moreover, green fluorescent calli have been maintained through continual subculture and grow well either on Gamborg's B5 agarose or liquid medium.