Journal of Chemical Physics, Vol.110, No.23, 11542-11550, 1999
Calculation of reduced partial cross sections of molecules photodesorbing from a cold crystal surface with internal vibrations: Inclusion of curve-crossing effects
A Gaussian wave packet/path integral (GWD/PI) method is used to compute final internal state distributions for a molecule photodesorbing from the surface of a zero-temperature crystal with internal vibrations in the situation where nonadiabatic coupling between two excited state potential surfaces is significant. The internal state distributions of the desorbed molecule are influenced by vast numbers of internal vibrational state transitions in the crystal which are not resolved in the calculation (or in experiment). A correlation function technique, introduced previously for the case of direct photodissociation on a single excited potential surface, is generalized to systems where two or more excited potential surfaces are nonadiabatically coupled. The accuracy of the method is successfully tested on a two-dimensional model for which numerically exact results can be computed. The method is then applied to a collinear model of a diatomic molecule photodesorbing from a chain of atoms coupled by Hooke's law springs. While exact results cannot be obtained in this case, sum rule checks suggest that the results of the GWD/PI are of acceptable accuracy (fractional error of several percent). It is found that for the class of problems under study, which feature nonadiabatic coupling that decays to zero along the photodesorption coordinate, only a few paths through the electronic state space have significant weight. This suggests that the method can be utilized to treat more complicated problems.