Journal of Chemical Physics, Vol.112, No.6, 2843-2848, 2000
A two-dimensional model of water: Theory and computer simulations
We develop an analytical theory for a simple model of liquid water. We apply Wertheim's thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the MB model, which is among the simplest models of water. Water molecules are modeled as 2-dimensional Lennard-Jones disks with three hydrogen bonding arms arranged symmetrically, resembling the Mercedes-Benz (MB) logo. The MB model qualitatively predicts both the anomalous properties of pure water and the anomalous solvation thermodynamics of nonpolar molecules. IET is based on the orientationally averaged version of the Ornstein-Zernike equation. This is one of the main approximations in the present work. IET correctly predicts the pair correlation function of the model water at high temperatures. Both TPT and IET are in semi-quantitative agreement with the Monte Carlo values of the molar volume, isothermal compressibility, thermal expansion coefficient, and heat capacity. A major advantage of these theories is that they require orders of magnitude less computer time than the Monte Carlo simulations.