화학공학소재연구정보센터
Journal of Chemical Physics, Vol.113, No.21, 9788-9793, 2000
Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes
We have described a method that maximizes the phase separation of graphitic particles (GP) and multiwalled carbon nanotubes (MWNT) in solutions of various organic polymeric hosts. This involves the formation of sediment and a solute. These components were characterized for MWNT and GP content using electron paramagnetic resonance (EPR) measurements. All EPR signals could be deconvoluted into nanotube and GP components. When normalized, these components are representative of the mass of MWNT and GP present. This allows us to make quantitative measurements of nanotube and GP content in different environments. The most successful polymer host was poly (m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) (PmPV). In this case the solute contained 63% of the added nanotubes with only 2% of the added graphite remaining.