화학공학소재연구정보센터
Journal of Chemical Physics, Vol.114, No.19, 8251-8256, 2001
The influence of the molecular charge on potential energy curves for the proton transfer in electronic ground and excited states
The potential energy curves were studied for the proton transfer in the electronic ground and excited states for the model systems H3O2-, H4O2, and H5O2+. The complete active space self-consistent-field calculations were performed for the ground state optimized structures. The potential energy curves for the proton transfer in the excited states undergo a dramatic change due to the different electronic density distribution as an effect of electronic excitations. In all cases of the studied excited states, the electron population on the transferred proton is higher compared to that in the ground state. The total charge of the system greatly influences the potential curves. Energy separation between ground and excited states is decreased due to the negative charge of the system and is increased when the studied species are positively charged. The vertical excitations of the complex are similar to those in the monomers, but the proton relaxation leads to significant energetical (energy barriers) and structural (H+ position) changes.