Journal of Chemical Physics, Vol.114, No.23, 10471-10478, 2001
Small-angle x-ray and neutron scattering studies of the volume phase transition in thermosensitive core-shell colloids
The volume transition in thermosensitive colloidal core-shell particles is investigated by small-angle x-ray scattering (SAXS), small-angle Neutron scattering (SANS), and dynamic light scattering (DLS). The latex particles are dispersed in water and consist of a solid poly(styrene) core with a diameter of 100 nm. The thermosensitive shell is made up of poly(N-isopropylacrylamide) (PNIPA) chains crosslinked by 2.5 mol% N,N'-methylenbisacrylamide (BIS). Water is a good solvent for PNIPA at room temperature but becomes a poor solvent above 32 degreesC. The PNIPA network of the shell undergoes a volume transition at this temperature. As a result the diameter of the particle shrinks. The scattering intensities of the particles measured by SAXS and SANS as a function of temperature may be decomposed into a part deriving from the overall structure and a part originating from the fluctuations within the network. The analysis of the overall structure leads to the volume fraction of the swollen network at different temperatures. SANS in conjunction with contrast variation demonstrates that the network is confined in a well-defined shell. SAXS and SANS data therefore allow the phase diagram of the network in the shell of the particles to be derived, i.e., the average volume fraction of the network in: the shell can be determined as a function of temperature. DLS corroborates this result but demonstrates that there is a small fraction of chains exceeding the outer radius derived from SAXS and SANS. The static intensity caused by the fluctuations of the network becomes the leading contribution at high scattering angles. SAXS data show that this part can be described by a Lorentzian both below and above the volume transition. The analysis demonstrates that critical fluctuations of the network around the transition temperature are fully suppressed. This finding is explained by the strong steric constraint of the network by its confinement within a shell of colloidal dimension.; The swelling and shrinking can only take place; along the radial direction and the chains are bound to the solid surface of the cores which remains constant during the transition. (C) 2002 American Institute of Physics.