Polymer(Korea), Vol.25, No.4, 512-520, July, 2001
SMA가 PC/SAN 블렌드와 유리섬유간의 계면결합력에 미치는 영향
Effect of SMA on the Interfacial Shear Strength for Single Glass Fiber and PC/SAN Blends
E-mail:
초록
섬유강화 복합재료의 물성을 결정하는 주요 인자중 하나는 계면결합력이다. 본 연구에서는 유리섬유와 PC/SAN 블렌드를 대상으로 하여 계면결합력을 측정하였으며 SAN함량을 0-30 wt%까지 변화시켜 실험하였다. 계면결합력 측정에는 Single Fiber Fragmentation Test법을 사용하였는데 SAN 함량이 증가할수록 계면결합력이 증가하였다. 한편 계면결합력을 증가시키기 위해 PC/SAN 혼련물을 개질하고자 소량의 SMA를 혼합하였으며, 유리섬유 표면을 실란 커플링제로 처리하여 관능기를 도입하였다. 계면결합력은 SAN/SMA계의 상용성에 크게 영향을 받았으며, 비상용성 SAN/SMA계보다 상용성 SAN/SMA계에서 계면결합력이 증가하였다. 또한 상용성 SAN/SMA계에서는 계면결합력이 SMA 내의 MA 함량이 아닌 전체 계내의 MA 함량에 의존하였으며 그 최적 함량은 0.4wt%였다.
One of the most important factors which affect the mechanical properties of fiber-reinforced composite materials is the interfacial shear strength (IFSS). The IFSS of glass fiber and polycarbonate (PC)/styrene-co-acrylonitrile (SAN) blend system has been measured by the single fiber fragmentation test (SFFT). SAN contents were varied up to 30 wt% and the IFSS increased with the SAN contents. Styrene-co-maleic anhydride (SMA) was used as the compatibilizer and the glass fiber was surface treated with organosilane coupling agents. Addition of small amount of SMA in PC/SAN blend improved the IFSS by chemical bonding between maleic anhydride and silanol. The optimum MA content was 0.4 wt% of total matrix contents. Also, IFSS was greatly affected by the miscibility condition of SAN/SMA blends, which depended on the copolymer composition of SAN and SMA. It was found out that, higher IFSS could be obtained when the SAN/SMA blend was in miscible pairs. In case of SAN/SMA miscible pairs, the IFSS depended on the MA content in total matrix, not on the MA content in SMA.
- Miwa M, Ohsawa T, Tahara K, J. Appl. Polym. Sci., 25, 795 (1980)
- Kelly A, Tyson WR, J. Mech. Phys. Solids, 13, 329 (1965)
- Hammer GE, Drzal LT, Appl. Surf. Sci., 4, 340 (1980)
- Takaku A, Arridge RGC, J. Phys. D. Appl. Phys., 6, 2038 (1973)
- Broutman LJ, Krock RH, "Modern Composite Materials", Addison-Wesley, New York (1967)
- Hughes JDH, Applied Chem. Division, AERE, Harwell, Reoprt No. R8683 (1977)
- Folkes MJ, Wong WK, Polymer, 28, 1309 (1987)
- Moon CK, Cho HH, Lee JO, Polym. Sci. Technol., 2(4), 284 (1991)
- Mcalea KP, Besio GJ, J. Mater. Sci. Lett., 7, 141 (1988)
- Moon CK, Polym.(Korea), 16(5), 529 (1992)
- Thomason JL, Schoolenberg GE, Composite, 25, 197 (1994)
- Herrera-Franco PJ, Drzal LT, Composite, 23, 2 (1992)
- Grubb DT, Li ZF, J. Mater. Sci., 29(1), 203 (1994)
- Li ZF, Grubb DT, J. Mater. Sci., 29(1), 189 (1994)
- Piggot MR, Dai SE, Polym. Eng. Sci., 31, 1246 (1991)
- Kang SM, Lee MC, Polym.(Korea), 19(3), 302 (1995)
- Bascom WD, Jensen RM, J. Adhes., 19, 219 (1986)
- Folkes MJ, Wong WK, Polymer, 28, 1309 (1987)
- Narkis M, Chen EJH, Polym. Compos., 9, 245 (1988)
- Netravali AN, Schwartz P, Polym. Compos., 10, 385 (1989)
- Dibendetto AT, Lex PJ, Polym. Eng. Sci., 29, 543 (1989)
- Agarwal BD, Broutman LJ, "Anaylsis and Performance of Fiber Compositres", John and Sons, New York (1990)
- Kim WN, Burns CM, Polym. Eng. Sci., 28, 1115 (1988)
- Keitz JD, Barlow JW, Paul DR, J. Appl. Polym. Sci., 29, 3131 (1984)
- Wu HF, Biresan G, Laemmil JT, Polym. Compos., 12, 281 (1991)
- Karian HG, Wagner HR, SPE ANTEC Tech. Papers, 39, 3449 (1993)
- Paul DR, Barlow JW, Polymer, 25, 487 (1984)
- Suess M, Kressler J, Kammer HW, Polymer, 28, 957 (1987)
- Shiomi T, Karasz FE, Macknight WJ, Macromolecules, 19, 2274 (1986)
- Lee JS, Ph.D. Thesis, Sogang University, Seoul, Korea (1996)
- Cha JY, Kwon HC, Polym. Sci. Technol., 3(5), 406 (1992)
- Brydson JA, "Plastic Material", 5th Ed., Butterworths, London (1989)
- Lombardo BS, Keskkula H, Paul DR, J. Appl. Polym. Sci., 54(11), 1697 (1994)