화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.4, 512-520, July, 2001
SMA가 PC/SAN 블렌드와 유리섬유간의 계면결합력에 미치는 영향
Effect of SMA on the Interfacial Shear Strength for Single Glass Fiber and PC/SAN Blends
E-mail:
초록
섬유강화 복합재료의 물성을 결정하는 주요 인자중 하나는 계면결합력이다. 본 연구에서는 유리섬유와 PC/SAN 블렌드를 대상으로 하여 계면결합력을 측정하였으며 SAN함량을 0-30 wt%까지 변화시켜 실험하였다. 계면결합력 측정에는 Single Fiber Fragmentation Test법을 사용하였는데 SAN 함량이 증가할수록 계면결합력이 증가하였다. 한편 계면결합력을 증가시키기 위해 PC/SAN 혼련물을 개질하고자 소량의 SMA를 혼합하였으며, 유리섬유 표면을 실란 커플링제로 처리하여 관능기를 도입하였다. 계면결합력은 SAN/SMA계의 상용성에 크게 영향을 받았으며, 비상용성 SAN/SMA계보다 상용성 SAN/SMA계에서 계면결합력이 증가하였다. 또한 상용성 SAN/SMA계에서는 계면결합력이 SMA 내의 MA 함량이 아닌 전체 계내의 MA 함량에 의존하였으며 그 최적 함량은 0.4wt%였다.
One of the most important factors which affect the mechanical properties of fiber-reinforced composite materials is the interfacial shear strength (IFSS). The IFSS of glass fiber and polycarbonate (PC)/styrene-co-acrylonitrile (SAN) blend system has been measured by the single fiber fragmentation test (SFFT). SAN contents were varied up to 30 wt% and the IFSS increased with the SAN contents. Styrene-co-maleic anhydride (SMA) was used as the compatibilizer and the glass fiber was surface treated with organosilane coupling agents. Addition of small amount of SMA in PC/SAN blend improved the IFSS by chemical bonding between maleic anhydride and silanol. The optimum MA content was 0.4 wt% of total matrix contents. Also, IFSS was greatly affected by the miscibility condition of SAN/SMA blends, which depended on the copolymer composition of SAN and SMA. It was found out that, higher IFSS could be obtained when the SAN/SMA blend was in miscible pairs. In case of SAN/SMA miscible pairs, the IFSS depended on the MA content in total matrix, not on the MA content in SMA.
  1. Miwa M, Ohsawa T, Tahara K, J. Appl. Polym. Sci., 25, 795 (1980) 
  2. Kelly A, Tyson WR, J. Mech. Phys. Solids, 13, 329 (1965) 
  3. Hammer GE, Drzal LT, Appl. Surf. Sci., 4, 340 (1980) 
  4. Takaku A, Arridge RGC, J. Phys. D. Appl. Phys., 6, 2038 (1973) 
  5. Broutman LJ, Krock RH, "Modern Composite Materials", Addison-Wesley, New York (1967)
  6. Hughes JDH, Applied Chem. Division, AERE, Harwell, Reoprt No. R8683 (1977)
  7. Folkes MJ, Wong WK, Polymer, 28, 1309 (1987) 
  8. Moon CK, Cho HH, Lee JO, Polym. Sci. Technol., 2(4), 284 (1991)
  9. Mcalea KP, Besio GJ, J. Mater. Sci. Lett., 7, 141 (1988) 
  10. Moon CK, Polym.(Korea), 16(5), 529 (1992)
  11. Thomason JL, Schoolenberg GE, Composite, 25, 197 (1994) 
  12. Herrera-Franco PJ, Drzal LT, Composite, 23, 2 (1992) 
  13. Grubb DT, Li ZF, J. Mater. Sci., 29(1), 203 (1994) 
  14. Li ZF, Grubb DT, J. Mater. Sci., 29(1), 189 (1994) 
  15. Piggot MR, Dai SE, Polym. Eng. Sci., 31, 1246 (1991) 
  16. Kang SM, Lee MC, Polym.(Korea), 19(3), 302 (1995)
  17. Bascom WD, Jensen RM, J. Adhes., 19, 219 (1986)
  18. Folkes MJ, Wong WK, Polymer, 28, 1309 (1987) 
  19. Narkis M, Chen EJH, Polym. Compos., 9, 245 (1988) 
  20. Netravali AN, Schwartz P, Polym. Compos., 10, 385 (1989) 
  21. Dibendetto AT, Lex PJ, Polym. Eng. Sci., 29, 543 (1989) 
  22. Agarwal BD, Broutman LJ, "Anaylsis and Performance of Fiber Compositres", John and Sons, New York (1990)
  23. Kim WN, Burns CM, Polym. Eng. Sci., 28, 1115 (1988) 
  24. Keitz JD, Barlow JW, Paul DR, J. Appl. Polym. Sci., 29, 3131 (1984) 
  25. Wu HF, Biresan G, Laemmil JT, Polym. Compos., 12, 281 (1991) 
  26. Karian HG, Wagner HR, SPE ANTEC Tech. Papers, 39, 3449 (1993)
  27. Paul DR, Barlow JW, Polymer, 25, 487 (1984) 
  28. Suess M, Kressler J, Kammer HW, Polymer, 28, 957 (1987) 
  29. Shiomi T, Karasz FE, Macknight WJ, Macromolecules, 19, 2274 (1986) 
  30. Lee JS, Ph.D. Thesis, Sogang University, Seoul, Korea (1996)
  31. Cha JY, Kwon HC, Polym. Sci. Technol., 3(5), 406 (1992)
  32. Brydson JA, "Plastic Material", 5th Ed., Butterworths, London (1989)
  33. Lombardo BS, Keskkula H, Paul DR, J. Appl. Polym. Sci., 54(11), 1697 (1994)