화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.3, 294-299, May, 2001
U/Np/Tc 계의 공추출 및 순차 분리 연구
Co-extraction and Sequential Stripping of Np/U/Tc System
E-mail:
초록
소멸처리 독성 및 대상 핵종인 U과 Tc, Np을 방사성 고준위 폐액으로부터 제거하기 위해 30 vol.% TBP를 이용한 이들 핵종의 공추출 및 순차분리 연구가 수행되었다. U, Tc, Np의 추출 및 역추출 거동 실험으로부터 U, Tc, Np 공추출 → Tc 분리 → Np 분리 → U 분리의 순서와 분리 조건이 제시되었다. U,Tc, Np의 공추출 시 Np의 추출율을 증진시키기 위하여 용액 중에 공존하는 Np(V)를 Np(VI)으로 전해 산화하는 방법이 필요하였으며, 역추출을 위해 Tc는 5 M 질산을, Np은 Np(VI)를 Np(V)으로 전해환원을, U은 0.3 M Na2CO3을 사용하는 것이 적절하였다. 추출 상비(O/A) 및 역추출 상비(A/O)는 모두 2 ~ 3을 유지하는 것이 필요하였다.
In order to remove U, Tc, Np, the target nuclides for transmutation, from the high-level radioactive waste, a process for co-extraction and sequential stripping of the nuclides was studied by using 30 vol.% TBP. On the basis of our experiments on extraction and stripping of each element of U, Tc, and Np, a combination of co-extraction of U, Tc, Np → Tc stripping → Np stripping → U stripping has been suggested. To increase of Np extraction yield, the electrolytic oxidation of Np(V) in Np solution was required at the step of co-extraction. In order to strip the extracted elements, sequentially 5 M nitric acid for Tc, electrolytic reduction of Np(VI) to Np(V) for Np, and 0.3 M sodium carbonate for U were used, respectively. The phase ratio (O/A or A/O) of the co-extraction and stripping were maintained at around 2 ~ 3.
  1. OECD Final Report: Status and Assessment Report on Actinide and Fission Product Partitioning and Transmutation, NEA/PTS/DOC(98) 4 (1998)
  2. Lelievre D, Boussier H, Grouiller JP, Bush RP, Perspectives and Cost of Partitioning and Transmutation of Long-Lived Radionuclides, EUR-17485 (1996)
  3. ICRP Report: Limits for Intake of Radionuclides by Workers, ICRP Publication, Part I (1978)
  4. ICRP Report: Limits for Intake of Radionuclides by Workers, ICRP Publication, Part II (1980)
  5. ICRP Report: Limits for Intake of Radionuclides by Workers, ICRP Publication, Part III (1981)
  6. Benedit M, Pigford TH, Levi HW, Nuclear Chemical Engineering, 2nd Edt., McGraw-Hill Book Company (1981)
  7. Morita Y, Kubota M, Recovery of Neptunium, JAERI-M-84-043 (1984)
  8. Kim KW, Song KC, Lee EH, Choi IK, Yoo JH, J. Radioanal. Nucl. Chem., 246, 215 (2000) 
  9. Kihara S, Yoshida Z, Aoyagi H, Bunseki Kagaku, 40, 309 (1991)
  10. Kim KW, Byeon KH, Lee EH, Yoo JH, Park HS, J. Korean Ind. Eng. Chem., 7(4), 743 (1996)
  11. Kim KW, Lee EH, Yoo JH, Park HS, U.S. Patent, 5,904,849 (1999)
  12. Kim KW, Byeon KH, Lee EH, Yoo JH, Park HS, J. Korean Ind. Eng. Chem., 8(3), 416 (1997)
  13. Kim KW, Lee EH, Shin YJ, Yoo JH, Park HS, J. Electrochem. Soc., 143(9), 2717 (1996) 
  14. Kim KW, Lee EH, Yoo JH, Sep. Sci. Technol., 34(13), 2627 (1999) 
  15. Kim KW, Lee EH, Choi IK, Yoo JH, Park HS, HWAHAK KONGHAK, 38(2), 142 (2000)
  16. Petrich G, Kolarik Z, KfK Annual Report: The 1981 Purex Distribution Data Index KfK 3080 (1981)
  17. Waston SB, Rainey RH, ORNL Report, ORNL-TM-5123 (1975)
  18. Pruett DJ, ORNL Report, ORNL-TM-8668 (1984)
  19. Schroeder NC, Radzinski SD, Ashley KR, Truonh AP, Szczepaniak PA, Science and Technology for Disposal of Radioactive Tank WastePlenum Press, N.Y., 301 (1998)
  20. Lee EH, Lim JK, Kim KW, Kwon SG, Yoo JH, Park HS, HWAHAK KONGHAK, 37(6), 897 (1999)
  21. Kim KW, Lee EH, Shen YJ, Yoo JH, Park HS, Sep. Sci. Technol., 30(17), 3351 (1995)