화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.3, 323-328, May, 2001
에텐간 사중극자 상호작용이 Zeolite A의 에텐기체 캡슐화 용량에 미치는 영향
The Effect of Quadrupolar Interaction among Ethene Gas Molecules on Their Encapsulation in Zeolite A
E-mail:
초록
캡슐화 모델(encapsulation model)을 이용하여 C2H4 기체분자간 사중극자(electrostatic quadrupole moment) 상호작용이 40% potassium 치환된 zeolite A 의 C2H4 기체 캡슐화 용량에 미치는 영향을 동경분포함수(radial distribution function)로 계산하였다. 사용한 동경분포함수의 형식은 YHB 동경분포함수이며, 조사한 밀도범위는 0 ~ 0.007/Å(3) 그리고 온도는 523 K이다. 사중극자의 영향은 사중극자간 상호작용 항이 포함되지 않은 Lennard-Jones 포텐샬과 사중극자간 상호작용 항이 포함된 Stockmayer 포텐샬로 그 동경분포함수를 구하여 조사하였다. 사중극자간 상호작용은 캡슐화 모델상의 zeolite A의 α 동공의 침투반경을 증가시켜 캡슐화 용량을 증가시키며, 캡슐화 용량의 증가 경향은 밀도가 증가할수록 더욱 빠른 속도로 증가하였다. 계산 결과에 의하면 밀도가 0.009/Å(3)이 되면 Lennard-Jones 분자모델의 경우는 캡슐화 용량이 39.41 STP cm(3)/g zeolite 그리고 Stockmayer 분자모델의 경우는 84.05 STP cm(3)/g zeolite 가 되어 약 2.1배나 많다. 또한, 이렇게 하여 계산한 밀도 0.0082/Å(3)(압력 850 atm) 그리고 523 K에서의 캡슐화 용량 75 STP cm(3)/g zeolite는 문헌상의 실험치인 76 ~ 81 cm(3)/g zeolite와 일치한다.
The effects of electrostatic quadrupolar moment between C2H4 gas molecules on the C2H4 gas encapsulation capacities of 40% potassium exchanged zeolite A were calculated with the radial distribution function by using the encapsulation model. The type of radial distributions used was the YHB radial distribution function. The density range and the temperature used were 0 ~ 0.009/Å(3) and 523 K, respectively. The effects of the quadrupolar interaction were examined by computing the radial distribution functions obtained with the Lennard-Jones molecular model which does not contain the quadrupolar interaction and the Stockmayer molecular model which contains the quadrupolar interaction. It appeared that the quadrupolar interaction increases the encapsulation capacities mainly by increasing the penetration radius of the encapsulation model of the a cavity in zeolite A. The increment of the encapsulation capacity has a tendency to increase with increasing the density. The calculated results showed that the encapsulation capacity of the Lennard-Jones molecular model gives 39.41 STP cm(3)/g zeolite and the Stockmayer molecular model gives 84.05 STP cm(3)/g zeolite at the density of 0.009/Å(3). This is approximately 2.1 times greater than that obtained from the Lennard-Jones molecular model. Moreover, the calculated encapsulation capacity value of 75 STP cm(3)/g zeolite at the density 0.0082/Å(3)(850 atm) and 523K showed a good agreement with the literaturely known experimental value of 76 ~ 81 STPcm(3)/g zeolite.
  1. Breck DW, J. Chem. Educ., 41, 678 (1964)
  2. Barrer RM, Vaughan DEW, J. Phys. Chem. Solids, 32, 731 (1971)
  3. Breck DW, "Zeolite Molecular Sieves," John Wiley & Sons, N.Y. (1974)
  4. Viennet E, Kahne R, De Lala C, J. Chem. Phys., 91, 5230 (1989) 
  5. Yoon JH, Heo NH, J. Phys. Chem., 96, 4997 (1992) 
  6. Happer RJ, Stifeld GR, Anderson RB, Can. J. Chem., 47, 4661 (1969) 
  7. Yoon JH, Huh MW, J. Phys. Chem., 98(12), 3202 (1994) 
  8. Yoon JH, Kim HW, J. Korean Ind. Eng. Chem., 9(4), 561 (1998)
  9. Jacoby M, Chem. Eng. News, May(25), 9 (1999)
  10. Pool R, Science, 263(5154), 1698 (1994) 
  11. Hill TL, "Statistical Mechanics," McGraw-Hill Book Co., N.Y. (1956)
  12. Yoon JH, J. Phys. Chem., 97, 6066 (1993) 
  13. Barker JA, Henderson D, J. Chem. Phys., 47, 2856 (1967) 
  14. Yoon JH, Hacura A, Baglin FG, J. Chem. Phys., 91, 5230 (1989) 
  15. Yoon JH, Ki HW, J. Korean Ind. Eng. Chem., 10(3), 456 (1999)
  16. Yoon JH, J. Korean Ind. Eng. Chem., 11(1), 94 (2000)
  17. Hirschfelder JO, Curtiss CF, Bird RB, "Molecular Theory of Gases and Liquids," John Wiley & Sons, N.Y. (1967)
  18. Stell G, Rasaiah JC, Narang H, Mol. Phys., 27, 1393 (1974)