화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.4, 439-443, June, 2001
전기분해에 의한 매립장 침출수 처리에 관한 연구
A Study on Landfill Leachate Treatment with Electrolysis
E-mail:
초록
본 연구는 고령화의 진행으로 생물학적 처리가 어려운 매립장 침출수를 처리하기 위하여 실시하였으며, 회분식 반응기를 이용하여 양극에는 탄소전극, 음극에는 알루미늄 전극과 철 전극을 사용하여 전기분해를 실시하였다. Al/C 전극을 이용시 Fe/C 전극보다 높은 전류 효율을 얻었으며, 최적의 전극 간격은 슬러지 발생이 적으면서도 높은 COD(Cr) 제거 효율을 얻을 수 있는 2.5 cm로 조사되었다. 또란 전류밀도 실험에서는 전력 소요량이 적으면서도 COD(Cr)의 제거 효율이 우수한 20 mA/cm(2)이 적합한 것으로 나타났으며, 전해질로 NaCl을 사용한 경우 전해질 농도가 높을수록 우수한 전류 효율을 보였는데, 이는 주입된 NaCl이 전기분해 동안에 NaOCl 및 HOCl을 생성시켜 유기 오염물질이 산화 제거된 결과로 판단되었다. 그리고 Al/C 전극을 사용하고 전극 간격을 2.5 cm, pH 7, NaCl 0.1 N 그리고 20 mA/Cm(2)의 전류밀도로 50 min간 침출수를 처리한 결과, 총질소는 63%가 제거된 반면 색도와 암모늄 이온은 각각 90%의 높은 제거 효율을 얻을 수 있었다.
This study was conducted to resolve the pollution problem of aged landfill leachate using electrolysis process. In this study, electrode material, electrode distance, current density, electrolyte concentration, and pH value were the parameters that were experimented to determine the optimal condetions for treating the organic and inorganic pollutants that arise from the landfill leachate. Aluminum/carbon and iron/carbon electrodes were tested in a batch reactor. The results shwed that the current efficiency of aluminum/carbon electrodes was higher than iron/carbon electrodes. The electrode distance of 2.5 cm was determined to be the optimal in removing the organic pollutants from the leachate. The current efficiency was proportional to the electrolyte concentration of NaCl, in which the increased electrolyte concentration increased the efficiency. This observation was due to the fact that added NaCl was converted to NaOCl and HOCl during the electrolysis, and they effectively oxidized the organic poolutacts. After 50 min of the electrolysis with Al/C, it was found that the removal of T-N, NH4(+)-N and color from the leachate were 63%, 90% and 90%, respectively.
  1. 환경부, "환경통계연감" (1999)
  2. 황규대, 한국폐기물학회지, 10(3), 443 (1993)
  3. 황규대, 한진우, 김민호, 한국폐기물학회지, 13(6), 718 (1996)
  4. Boyle WC, Ham RK, J. WPCF, 46(5), 860 (1974)
  5. Robinson HD, Maris PJ, J. WPCF, 50(1), 30 (1985)
  6. Bull PS, Evans JV, Wechsler RM, Cleland KJ, Water Res., 17(11), 1474 (1983)
  7. Mavinic DS, Water Res., 18(10), 1279 (1984) 
  8. 홍정선, 단국대학교, 박사학위논문 (1993)
  9. 김성국, 박상원, 홍대일, 한국환경학회지, 8(10), 539 (1999)
  10. Snoeyink VL, Jenkins D, "Water Chemistry", John Wiley and Sons, Inc, New York, 269 (1980)
  11. Chiang LC, Chang JE, Wen TC, Water Res., 29(2), 671 (1995) 
  12. Lin SH, Wu CL, J. Environ. Sci., 30(4), 1445 (1995)
  13. 김운수, 단국대학교, 박사학위논문 (1991)
  14. White GC, "The Handbook of Chlorination" 2nd edition, Van Nostrand Reinhold, New York, 172 (1993)
  15. Boyle WC, Ham RK, J. WPCF, 46(7), 1776 (1974)
  16. Standard Methods For Examination of Water and Wastewater, 17th edition, American Public Health Association (1990)
  17. 동화기술, 공해공정시험법(수질편) (1997)
  18. Chian ES, Dewalle FB, J. Environ. Eng., 102(2), 411 (1976)
  19. Bruechner TG, J. WPCF, 47(1), 320 (1985)