화학공학소재연구정보센터
Korea Polymer Journal, Vol.9, No.4, 228-237, August, 2001
The Evolution of Rigid Amorphous Fraction and Its Correlation with the Glass Transition Behavior in Semicrystalline Bisphenol-A Polycarbonate
E-mail:
The evolution of conformational constraints in bisphenol-A polycarbonate (BAPC) upon quiescent bulk crystallization was quantitatively analyzed from calorimetric study employing a rigid amorphous fraction (RAF) as an indicator of the level of conformational constraints. From the correlation between corrected crystallinity (X(c)) and total rigid fraction (f(r)), it was found that, regardless of molar mass distribution and thermal treatment conditions, semicrystalline BAPC always exhibits greater f(r) than X(c) maintaining a quantitative relationship of f(r) ≒ 2X(c) in the range of 0.00.2) needed to initiate significant changes in both quantities.
  1. Schultz J, Polym. Mater. Sci., Prentice-Hall, Inc, Englewood Cliffs, New Jersey (1974)
  2. Magill JH, Morphogenesis of Solid Polymer Microstructure, in Treaties on Materials Science and Technology, Volume 10, Properties of Solid Polymeric Materials, Part A, J. M. Schultz, Ed., Academic Press, New York (1977)
  3. Mandelkern L, The Crystalline State, in Physical Properties of Polymers, J.E. Mark, Ed., ACS Washington D.C (1984)
  4. Suzuki H, Grebowicz J, Wunderlich B, Brit. Polym., 17, 11 (1985)
  5. Beatty CL, Karasz FE, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C17, 37 (1979)
  6. Grebowicz J, Lau SF, Wunderlich B, J. Polym. Sci. Polym. Symp., 71, 19 (1984)
  7. Menczel J, Wunderlich B, J. Polym. Sci. C: Polym. Lett., 19, 265 (1981)
  8. Karasz FE, Bair HE, OReilly JM, J. Phys. Chem., 69(8), 2657 (1965)
  9. Cheng SZD, Pan R, Wunderlich B, Macromol. Chem., 189, 2443 (1988) 
  10. Wunderlich B, Thermal Analysis, Academic Press, Sandiego, CA (1990)
  11. Huo P, Cebe P, Colloid Polym. Sci., 270, 840 (1992) 
  12. Cheng SZD, Xu ZQ, Wunderlich B, Macromolecules, 20, 2802 (1987) 
  13. Cheng SZD, Cao MY, Wunderlich B, Macromolecules, 29, 1868 (1986) 
  14. Huo PP, Friler JB, Cebe P, Polymer, 34, 4387 (1993) 
  15. Lu SX, Cebe P, Capel M, Macromolecules, 30(20), 6243 (1997) 
  16. Cebe P, Huo PP, Thermochim. Acta, 238, 229 (1994)
  17. Srinivas S, Wilkes GL, Polymer, 39(23), 5839 (1998) 
  18. Laredo E, Grimau M, Muller A, Bello A, Suarez N, J. Polym. Sci. B: Polym. Phys., 34(17), 2863 (1996) 
  19. Lau SF, Wunderlich B, J. Polym. Sci. B: Polym. Phys., 22, 379 (1984)
  20. Suzuki H, Grebowicz J, Wunderlich B, Macromol. Chem., 186, 1109 (1985) 
  21. Marand H, Alizadeh A, Farmer R, Desai R, Velikov V, Macromolecules, 33(9), 3392 (2000) 
  22. Marand H, Alizadeh A, Farmer R, Desai R, Velikov V, Bull. Am. Phys. Soc., 44(1), 608 (1999)
  23. Sohn S, Alizadeh A, Marand H, Polymer, 41(25), 8879 (2000) 
  24. Sohn S, Alizadeh A, Marand H, Shank LC, Iler HD, Am. Chem. Soc. Polym. Preprint, 81, 250 (1999)
  25. Alizadeh A, Sohn S, Quinn J, Marand H, Shank LC, Iler HD, Macromolecules, 34(12), 4066 (2001) 
  26. In a strict sense, to compare the level of RAF among various samples with different molar masses, Tc for each sample needs to be set to lead to the same undercooling, i.e., △T=Tm°-Tc, where Tm° is an equilibrium melting temperature. Unfortunately, at present, the equilibrium melting temperatures of BAPC fractions are not available; thus assuming at least qualitatively the shift of Tg is related to the increase of Tm° of a given polymer, this criterion was applied.
  27. Sohn S, Alizadeh A, Marand H, manuscript in preparation.
  28. Flory PJ, J. Polym. Sci. C-Polym. Lett., 16, 3373 (1968)
  29. Kumler PL, Keinath SE, Boyer RF, J. Macromol. Sci. Phys., B13, 631 (1977)
  30. Boyer RF, J. Macromol. Sci. Phys., B7, 487 (1973)
  31. Cheng SZD, Wunderlich B, J. Polym. Sci. B: Polym. Phys., 24, 1755 (1986) 
  32. Wunderlich B, Jones LD, J. Macromol. Sci. Phys., B3, 67 (1969)
  33. Adam GA, Hay JN, Parsons IW, Haward RN, Polymer, 17, 51 (1976) 
  34. Dimarzo EA, Dowell F, J. Appl. Phys., 50, 6061 (1979) 
  35. Kim W, Burns CM, J. Appl. Polym. Sci., 34, 945 (1987) 
  36. Wissler GE, Crist B, J. Polym. Sci. B: Polym. Phys., 18, 1257 (1980)
  37. Jonza JM, Porter RS, J. Polym. Sci. B: Polym. Phys., 24, 2459 (1986) 
  38. Turska E, Przygocki W, Maslowski M, J. Polym. Sci. C-Polym. Lett., 16, 3373 (1968)
  39. Mendez G, Muller AJ, J. Thermal Anal., 50, 593 (1997) 
  40. Falkai B, Rellensmann W, Makromolekular Chem., 75, 112 (1964) 
  41. Di Filippo GV, Gonzalez ME, Gasiba MT, Muller AV, J. Appl. Polym. Sci., 34, 1959 (1987) 
  42. Sohn S, Ph.D. Dissertation, The effects of time, temperature, and molar mass on the crystallization behavior of bisphenol-A polycarbonate, April, 2000, Blacksburg, Virginia, Virginia Polytechnic Institute and State University, USA.
  43. Schnell H, Chemistry and Physics of Polycarbonates, John Wiley & Sons, Inc (1964)
  44. Kampf G, Kolloid-Zeitschrift, 172, 50 (1960) 
  45. Dobkowski Z, Eur. Polym. J., 18, 563 (1982) 
  46. ATHAS data Bank: http://funnelweb.utcc.utk.edu/~athas/databank/intro.html.