Journal of Materials Science, Vol.34, No.18, 4533-4544, 1999
The influence of carbon on the phases in the copper-titanium system and their precipitation
The influence of carbon on the phases occurring in the copper-titanium system has been experimentally investigated. Samples were fabricated from elemental copper and titanium. Carbon was added in the form of graphite or as titanium carbide. The samples were encapsulated, heat-treated at 1173 or 1373 K for 24 h and subsequently quenched in brine. The phases present at the treatment temperature were identified, as well as the phases occurring during solidification. The microstructure indicates the presence of a miscibility gap. The composition of the phases were determined using EDS-analysis. The composition of the copper phase was found to show a great variation caused by the precipitation sequence during quenching of the melts. The complex precipitation also caused both TiCu4 and the meta-stable TiCu3 to form. The composition of TiCu was found to show a wider compositional interval than earlier found. The variation of its composition with the nominal composition suggests that TiCu can dissolve carbon. The pure Ti phases also showed larger solubility of copper than earlier found. An outline of the precipitation sequence is made.