HWAHAK KONGHAK, Vol.25, No.5, 460-467, October, 1987
기포탑의 축방향 및 반경방향 혼합특성
Axial and Radial Mixing Characteristics in Bubble Columns
초록
직경 10.2 ㎝, 높이 3 m인 연속 조작 기포탑에서 연속 액상의 축방향과 반경방향 혼합계수를 구하였으며, 분산상인 기포의 체류량 등 수력학적 특성을 고찰하였다.
기체 유속(1.0-10.0 ㎝/s)과 액체 유속(2.0-12.0 ㎝/s)이 기포탑의 수력학적 특성에 미치는 영향 등을 검토하였는데, 기포의 체류량, 액상의 축방향과 반경반향 혼합계수 및 기포탑내에서의 액상의 순환속도들은 기체 유속이 증가함에 따라 모두 증가하였으나, 액체 유속이 증가함에 따라서는 기포의 체류량은 감소하고, 액상의 반경방향 혼합계수는 증가하였으나, 액상의 축방향 혼합계수와 탑내에서의 순환속도는 큰 영향을 받지 않았다.
기포탑내에서 기포의 상승속도의 해석은 drift flux model을 적용하였으며, 액상의 축방향과 반경방향 혼합계수를 등방난류 모델을 적용하여 correlation하였다.
기체 유속(1.0-10.0 ㎝/s)과 액체 유속(2.0-12.0 ㎝/s)이 기포탑의 수력학적 특성에 미치는 영향 등을 검토하였는데, 기포의 체류량, 액상의 축방향과 반경반향 혼합계수 및 기포탑내에서의 액상의 순환속도들은 기체 유속이 증가함에 따라 모두 증가하였으나, 액체 유속이 증가함에 따라서는 기포의 체류량은 감소하고, 액상의 반경방향 혼합계수는 증가하였으나, 액상의 축방향 혼합계수와 탑내에서의 순환속도는 큰 영향을 받지 않았다.
기포탑내에서 기포의 상승속도의 해석은 drift flux model을 적용하였으며, 액상의 축방향과 반경방향 혼합계수를 등방난류 모델을 적용하여 correlation하였다.
Gas holdup and axial and radial dispersion coefficients of continuous liquid phase have been studied in a 10.2 ㎝-ID acryl column. The effects of gas flow rate (1.0-10.0 ㎝/s) and liquid flow rate (2.0-12.0 ㎝/s) on the hydrodynamic characteristics of a bubble column have been determined.
Gas holdup, axial and radial dispersion coefficients of liquid phase, and liquid circulation velocity in the column were increased with an increase in gas flow rate. However, increasing liquid flow rate the gas holdup was decreased and the radial dispersion coefficient of liquid phase was increased. The axial dispersion coefficient and the circulation velocity of liquid phase were little affected by the liquid flow rate.
Bubble rising velocity in the column was analyzed by employing the drift flux model, and the two dispersion coefficients of liquid phase were correlated by means of isotropic turblence model.
Gas holdup, axial and radial dispersion coefficients of liquid phase, and liquid circulation velocity in the column were increased with an increase in gas flow rate. However, increasing liquid flow rate the gas holdup was decreased and the radial dispersion coefficient of liquid phase was increased. The axial dispersion coefficient and the circulation velocity of liquid phase were little affected by the liquid flow rate.
Bubble rising velocity in the column was analyzed by employing the drift flux model, and the two dispersion coefficients of liquid phase were correlated by means of isotropic turblence model.