Biotechnology Progress, Vol.13, No.1, 60-70, 1997
Biosorption of Uranium by Pseudomonas-Aeruginosa Strain Csu Immobilized in a Novel Matrix
Pseudomonas aeruginosa CSU, a nongenetically engineered bacterial strain previously shown to bind dissolved hexavalent uranium (as UO22+ and/or its cationic hydroxy complexes), shows promise as the basis of an immobilized-cell process for removal of dissolved uranium from contaminated wastewaters. A number of polymeric materials, including calcium alginate, polyacrylamide, polysulfone, and polyurethane, were evaluated as possible immobilization matrices for lyophilized biomass of P. aeruginosa CSU. Polyurethane-based materials such as hydrogel were identified as superior candidates for biomass immobilization. A novel polyurethane gel-bead fabrication technique was developed and successfully demonstrated at pilot-plant scale for producing mass quantities of spherical, uniform-size beads. The immobilized bacterial biomass was evaluated via the measurement of sorption isotherms and dynamics within a batch, stirred-tank reactor; and loading and elution behavior within a continuous, upflow, packed-bed columnar reactor. Sorption equilibrium and dynamics in a batch stirred tank were modeled with a pore-diffusion mass transfer model, by which a pore-diffusion coefficient was determined to be approximately 2.0 x 10(-6) cm(2)/s for uranyl ion transport through the polyurethane gel matrix. The biosorbent beads were regenerable with dilute (0.01-0.1 M) sodium carbonate solutions. Preliminary column breakthrough-elution studies indicated that P. aeruginosa CSU biomass immobilized within polyurethane gel beads was effective for removal of uranium from low-concentration, acidic wastewaters.
Keywords:HEAVY-METALS;SACCHAROMYCES-CEREVISIAE;BIOMASS BIOSORPTION;CITROBACTER SP;AQUEOUS FLOWS;RECOVERY;ACCUMULATION;REMOVAL;MODEL;BIOACCUMULATION