Journal of Polymer Science Part B: Polymer Physics, Vol.38, No.16, 2170-2178, 2000
Use of a cooperative-motion domain model to analyze Brillouin light scattering measurements of the dynamic modulus in triblock copolymers
The use of the relaxation function is widespread in the study of polymer dynamics. Since the popular empirical KWW relaxation function consistently underestimates dielectric loss at high frequency, several models dealing explicitly with intermolecular cooperativity have been proposed as alternatives. In this article, the domain model proposed by Matsuoka, previously used only to analyze dielectric relaxation results, is used to analyze Brillouin light scattering results from polystyrene-polybutadiene-polystyrene triblock. copolymers. A single relaxation time analysis and the KWW model are both compared to the domain model. Neither of these models fits the Brillouin data well. The single relaxation time analysis gives a physically unrealistic results; the KWW analysis fits the data at low frequency, but fails in the high-frequency region by underestimating the attenuation. The domain model fits the Brillouin data well over the entire temperature/frequency range. The results show that in order to understand the full range of dynamics in these materials and in polymeric materials in general, the KWW model is insufficient due to its underestimation of attenuation at high frequency. A model including cooperative motion is crucial to fully understand polymer dynamics.
Keywords:Brillouin scattering;triblock copolymers