화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.5, 547-553, August, 2001
질산에 의한 폐 Poly(butylene terephthalate)의 해중합
Depolymerization of Waste Poly(butylene terephthalate) by Nitric Acid
E-mail:
초록
폐 PBT 입자를 용융온도 이하의 온도 70 ~ 100 ℃에서 8.91 ~ 13.14 M 질산의 가수분해에 의해 해중합하였다. 질산의 농도 및 반응온도가 증가하고, 입자의 크기가 감소함에 따라 해중합도는 증가하였다. 질산에 의한 가수분해속도는 TPA가 PBT 입자표면에 부착되어 유효 반응표면적이 영향을 받아 그 표면적이 PBT 미반응도에 비례하기 때문에 표면반응이 율속인 수정된 수축형 미반응핵 모델로 표현할수 있었다. 겉보기 속도상수는 입자의 크기가 감소함에 따라 증가하였고, 겉보기 활성화에너지는 약 108KJ/mol 이었으며, TPA의 회수율은 약 95%이었다.
Waste PBT powder was depolymerized by hydrolysis using 8.91 ~ 1314 M nitric acid at various temperatures between 70 ~ 100 ℃ below its melting temperature. The degree of depolymerization increased with increasing concentration of nitric acid and reaction temperature, and decreasing particle size. The kinetics of the acid hydrolysis could be expressed by a modified shrinking unreacted core model for surface reaction-controlling step. The effective surface area is proportional to the degree of unreacted PBT and is affected by the deposition of TPA product on the PBT. The apparent rate constant increased with decreasing particle size. The activation energy of the reaction was about 108 kJ/mol. The recovery ratio of TPA was about 95%.
  1. "세계기술브리프", 산업기술정보원, 제167호, 92 (1992)
  2. Oh SY, Polym. Sci. Technol., 3(2), 96 (1992)
  3. "PBT수지의 산업동향", 한일부품산업정보 (1997)
  4. "시설능력(합성섬유원료)", 한국석유화학공업협회 (1998)
  5. Lotz R, U.S. Patent, 3,321,510 (1967)
  6. Joshi KA, Naik GA, J. Appl. Sci., 35, 1921 (1988) 
  7. George E, Brown J, Richard C, O'Brien, U.S. Patent, 3,952,053 (1976)
  8. Lamparter RA, U.S. Patent, 4,542,239 (1985)
  9. Fujita, U.S. Patent, 4,609,680 (1986)
  10. Cho JY, Chungnam National University, M.S thesis (1995)
  11. Hong JS, Soongsil University, M.S. thesis (1994)
  12. Kwon DK, Soongsil University, M.S. thesis (1994)
  13. Klingsberg A, Piccininn RM, Savatore A, Baldwin T, "Encyclopedia of Polymer Science and Engineering", 2nd, 12, 226, Wiley-Interscience (1988)
  14. Paszun D, Spychaj T, Ind. Eng. Chem. Res., 36(4), 1373 (1997) 
  15. Cho CH, "Organic Chemistry", 300, Dongmyeong Publising Co. (1987)
  16. Yoshioka T, Okayama N, Okuwaki A, Proc. Int. Symp. East Asian Resources Recycling Tech., 3rd, 519 (1995)
  17. Ebbing DD, Wrighton MS, "General Chemistry", 453, Houghton Mifflin Co. (1984)
  18. 이정근, 김택영, 김영기, "이화학사전", 512, 대광서림 (1990)
  19. Levenspiel O, "Chemical Reaction Engineering", 2nd, 357, John Wiley & Sons Inc. (1962)
  20. Seul SD, "Chemical Reaction Engineering", 101, Daeyoung (1997)
  21. Fogler HS, "Elements of Chemical Reaction Engineering", 3rd, 702, 706, 777, Prentice Hall International Inc. (1999)
  22. Ahn TO, Lee DN, Park YM, Lee SW, Jeong HM, "Physical Polymer Science" 128, 233, Daekwang-munhwasa (1989)
  23. Castallan GW, "Physical Chemistry", 2nd, 70, Addison Wesley Publishing Company (1991)
  24. Yoshioka T, Okayama N, Okuwaki A, Ind. Eng. Chem. Res., 37(2), 336 (1998)