화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.6, 614-619, October, 2001
담지된 광촉매를 이용한 질소산화물 광분해 연구
Photocatalytic Decomposition of Nitric Oxide Over Supported Photocatalyst
E-mail:
초록
여러 종류의 담체에 TiO2가 담지된 광촉매를 이용하여 일산화질소(NO) 분해 연구를 진행하였다. NO 광분해 반응은 UV 조사 하에서 유동층 반응기를 이용하여 상온에서 행하였다. 함침법과 졸-겔법에 의하여 제조된 광촉매는 X-선 회절분석(X-ray diffraction, XRD), 주사 전자 현미경(scanning electron spectroscopy, SEM) 및 BET 표면적으로 특성화하였다. 실리카, 알루미나, Y-제올라이트, ZSM-5에 TiO2를 담지시킨 촉매 중에서 알루미나에 담지한 촉매가 가장 우수한 NO 광분해 활성을 보였다. 최적의 촉매인 알루미나에 10 wt%의 TiO2를 담지시키고 700 ℃에서 소성시킨 TiO2(10)/Al2O3-700 ℃ 촉매는 1h 후에 50%의 NO 분해율을 보여 27%의 NO 분해율을 보이는 TiO2 (Degussa, P-25) 보다 2배 이상 우수한 NO 광분해 활성을 보였다. 또한 최적 촉매는 NO 분해 반응 동안 촉매 표면 위에 침적되는 질소염의 양이 P-25 보다 적어 반응시간에 따른 촉매의 안정성도 우수하였다. 그러나 최적의 촉매인 TiO2(10)/Al2O3와 조성이 동일하고 졸-겔법에 의하여 제조된 TiO2-Al2O3 촉매의 NO 분해능은 10% 정도로 최적 촉매와 비교하여 상당히 낮은 활성을 보였다.
Photocatalytic decomposition of nitric oxide (NO) over TiO2 photocatalyst supported on various carriers was studied in a fluidized-bed photocatalytic reaction system containing ultra-violet (UV) irradiation at room temperature. Various supported photocatalysts, prepared by impregnation and sol-gel methods, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET surface area. Among TiO2 photocatalysts supported on silica, alumina, Y-zeolite and ZSM-5, the alumina supported photocatalyst showed the best photocatalytic NO decomposition activity. The optimal catalyst was prepared by impregnation of 10 wt% TiO2 on alumina and calcined at 700 ℃ (TiO2(10)/Al2O3-700C) showed 50% NO decomposition during 1 h period. This was 2 times higher than that of the commercial TiO2 (Degussa, P-25), which showed only 27% NO decomposition during 1 h period. The optimal catalyst was more stable than P-25 because less amount of nitrogen salt was on the surface during the decomposition. The TiO2-Al2O3 catalyst that was prepared by the sol-gel method contained the same composition as the optimal catalyst, TiO2(10)/Al2O3, however, it showed a very low NO decomposition activity, resulting only about 10% decomposition during 1 h period.
  1. Masters GM, "Introduction to Environmental Engineering and Science", 2rd ed., Prentice Hall, Upper Saddle River, New Jersey, NJ (1998)
  2. Anpo M, Matsuoka M, Hanou K, Mishima H, Yamashita H, Patterson HH, Coord. Chem. Rev., 171, 175 (1998)
  3. Matsuoka M, Matsuda E, Tsuji K, Yamashita H, Anpo M, J. Mol. Catal., 107, 399 (1996) 
  4. Anpo M, Zhang SG, Mishima H, Matsuoka M, Yamashita H, Catal. Today, 39(3), 159 (1997) 
  5. Anpo M, Matsuoka M, Yamashita H, Catal. Today, 35(1-2), 177 (1997) 
  6. Ibusuki T, Takeuchi K, J. Mol. Catal., 93, 88 (1994)
  7. Cant NW, Cole JR, J. Catal., 134, 317 (1992) 
  8. Hager S, Bauer R, Kudielka G, Chemosphere, 41, 1219 (2000) 
  9. Ozkan US, Kumthekar MW, Karakas G, Catal. Today, 40(1), 3 (1998) 
  10. Lim TH, Jeong SM, Kim SD, Gyenis J, J. Photochem. Photobiol., 134, 209 (2000)