화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.5, 607-612, October, 2001
기체 유동층에서 슬러그 특성에 대한 온도의 영향
Temperature Effect on the Slug Properties in a Gas Fluidized Bed
E-mail:
초록
기체 유동층에서 최소 슬러깅 속도와 슬러그 특성에 미치는 층 온도의 영향을 조사하기 위하여 전기로 가열되는 고온 유동층(0.1m i.d., 2.1m height, 12 kw)에서 FCC 입자(평균 입경 0.071 mm, 입자 밀도 1,600 kg/m3)를 사용하여 유속, 층 온도의 변화에 따른 최소 슬러깅 속도와 슬러그 특성(슬러그 상승 속도, 슬러그 길이, 슬러그 빈도)을 측정 및 고찰하였다. 유동화 기체로는 공기를 사용하였다. 기체 유속은 최소 유동화 속도로부터 0.15 m/s까지, 층 온도는 25℃부터 400℃까지 변화되었다. 기포 혹은 슬러그 특성은 각각 2개의 인접한 압력점들이 연결되는 두 개의 차압 변환기를 이용하는 차압법으로 측정하였다. 층 온도가 증가함에 따라 최소 슬러깅 속도와 슬러그 길이는 증가하였으며, 슬러그 빈도는 감소하는 경향을 나타내었다. 슬러그 상승 속도는 층 온도가 증가함에 따라 증가하였으며, 층 온도가 고려된 슬러그 상승 속도에 관한 상관식을 제시하였다.
In order to understand the effect of temperature on slug properties, the onset velocity of slugging and slug properties(slug rising velocity, slug length, slug frequency) have been measured with variations of gas velocity and temperature in a electrically heated gas fluidized bed(0.1 m i.d., 2.1 m height, 12 kw). Air was used as fluidizing gas and FCC particle(specific surface mean diameter: 0.071 mm, apparent density: 1,600 kg/m3) as bed material. The gas velocity was varied from minimum fluidizing velocity to 0.15 m/s and the bed temperature from 25 ℃ to 400 ℃. The bubble or slug properties were measured with the differential pressure method using two differential pressure transducers connected with a couple of adjacent pressure taps, respectively. As the bed temperature increased, the minimum slugging velocity, slug rising velocity, and slug length increased whereas the slug frequency decreased. A correlation for the slug rising velocity, which expresses the effect of bed temperature, was proposed.
  1. Baeyens J, Geldart D, Chem. Eng. Sci., 29, 255 (1974) 
  2. Fatah N, Flamant G, "Velocity at the Onset of Slugging in Large Particle Fluidized Systems at High Temperatures," in Fluidization and Fluid Particle Systems, Casal, J. and Arnaldos, J.(eds.), Universitat Politecnica de Cataluya, Spain, 103 (1990)
  3. Dimattia DG, Amyotte PR, Hamdullahpur F, Can. J. Chem. Eng., 75(2), 452 (1997)
  4. Stewart PSB, Davidson JF, Powder Technol., 1, 61 (1967) 
  5. Broadhurst TE, Becker HA, AIChE J., 21(2), 238 (1975) 
  6. Lee GS, Kim SD, Powder Technol., 62, 207 (1990) 
  7. De Luca L, Di Felice R, Foscolo PU, Powder Technol., 69, 171 (1992) 
  8. Verloop J, Heertjes PM, Chem. Eng. Sci., 29, 1035 (1974) 
  9. Nakamura K, Masaaki GH, Katsuhiko H, Kag. Kog. Ronbunshu, 2(6), 577 (1976)
  10. Satija S, Fan LS, AIChE J., 31, 1554 (1985) 
  11. Shichun C, Heling Z, Feichen J, "A Study of Hydrodynamic Behavior of the Slugging Fluidized Bed," in Fluidication, Kwauk, M. and Kunii, D.(eds.), Elsevier, Amsterdam, 75 (1985)
  12. Noordergraaf IW, Van Dijk A, Van Den Bleek CM, Powder Technol., 52, 59 (1987) 
  13. Lee SH, "Slug Properties in a Fluidized Bed of Polymer Powders," Master Thesis, Korea Advanced Institute of Science and Technology, 1 (1997)
  14. Lee SH, Lee DH, Kim SD, Korean J. Chem. Eng., 18(3), 387 (2001)
  15. Lanneau KP, Trans. Inst. Chem. Eng., 38, 125 (1960)
  16. Fan LT, Ho TC, Walawender WP, AIChE J., 29, 33 (1983) 
  17. Dry RJ, Judd MR, Shingles T, Powder Technol., 39, 69 (1984) 
  18. Clark NN, McKenzie EA, Gautam M, Powder Technol., 67, 187 (1991) 
  19. Lee GS, Kim SD, Korean J. Chem. Eng., 6(1), 15 (1989)
  20. Park WH, Kang WK, Capes CE, Osberg GL, Chem. Eng. Sci., 24, 851 (1969) 
  21. Matsen JM, Tarmy BL, Chem. Eng. Prog. Symp. Ser., 66(1), 1 (1970)
  22. Hovmand S, Davidson JF, in "Fluidization," Davidson, J.F. and Harrison, D.(eds.), Academic Press, Yorkshire, 193 (1971)
  23. Kunii D, Levenspiel O, "Fluidization Engineering," 2nd ed., Butterworth-Heinemann, 68 (1991)
  24. Choi JH, Son JE, Kim SD, Ind. Eng. Chem. Res., 37(6), 2559 (1998) 
  25. Kehoe PWK, Davidson JF, "Continuously Slugging Fluidized Beds," CHEMECA'70, Inst. Chem. Eng. Symp. Ser., No. 33, Butterworths, Australia, Melbourne, 97 (1970)