화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.5, 641-648, October, 2001
레졸형 페놀수지/층상실리케이트 나노복합체의 제조 및 경화속도론에 관한 연구
Synthesis and Cure Kinetics of Resol Type Phenolic Resin/Layered Silicate Nanocomposite
E-mail:
초록
레졸형 페놀수지/층상실리케이트 나노복합체(RPLSNs)들을 용융삽입법에 의해 제조하고, 층상실리케이트의 양에 따른 경화속도론에 관하여 연구하였다. 나노복합체는 층상실리케이트의 양이 3 wt%이하에서는 부분적으로 박리된 구조였으나, 5 wt%에서는 뭉쳐진 실리케이트의 양이 증가하였다. 실리케이트의 양이 증가함에 따른 경화반응속도를 살펴본 결과 활성화 에너지는 순수한 페놀수지와 비슷하였고, 빈도인자(frequency factor)는 순수한 페놀수지에 비해 7배 작았다. 따라서 나노 복합체를 경화시키면 실리케이트의 입체장애로 인해 페놀수지의 완전한 3차원적 망상구조 형성에 방해가 됨을 알 수 있었다.
Resol type phenolic resin/layered silicate nanocomposites(RPLSNs) were prepared by melt intercalation method and the cure kinetics was studied as a function of the amount of layered silicate. The partially exfoliated structure was found below 3 wt% of layered silicate, while more stacked silicates were found at 5 wt% of layered silicates. The result of FTIR experiment for cure reaction of phenolic resin showed that the RPLSN had almost the same activation energy as pristine phenolic resin but it had 7 times lower frequency factor than pristine phenolic resin as the amount of layered silicate increased. Therefore, the steric hindrance of layered silicate in the nanocomposite affected the cure kinetics and disturbed the formation of three dimensional network structure of phenolic resin during cure reaction.
  1. Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A, J. Appl. Polym. Sci., 67(1), 87 (1998) 
  2. Wang Z, Pinnavaia TJ, Chem. Mater., 10, 3769 (1998) 
  3. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O, J. Mater. Res., 8, 1185 (1993)
  4. Yano K, Usuki A, Okada A, J. Polym. Sci. A: Polym. Chem., 35(11), 2289 (1997) 
  5. Yang Y, Zhu ZK, Yin J, Wang XY, Qi ZE, Polymer, 40(15), 4407 (1999) 
  6. Messersmith PB, Giannelis EP, Chem. Mater., 6, 1719 (1994) 
  7. Bursnide SD, Giannelis EP, Chem. Mater., 7, 1597 (1995) 
  8. Vaia RA, Vasudevan S, Krawiec W, Scanlon LG, Giannelis EP, Adv. Mater., 7, 154 (1995) 
  9. Brown JM, Curliss D, Vaia RA, Chem. Mater., 12, 3376 (2000) 
  10. Messersmith PB, Giannelis EP, J. Polym. Sci. A: Polym. Chem., 33(7), 1047 (1995) 
  11. Lan T, Pinnavaia TJ, Chem. Mater., 6, 2216 (1994) 
  12. Wang Z, Pinnavaia TJ, Chem. Mater., 10, 1820 (1998) 
  13. Knop A, Scheib W, "Chemistry and Application of Phenolic Resins," Springer-verlag, Berlin (1979)
  14. Usuki A, Mizutani T, Fukushima Y, Fujimoto M, Fukomori K, Kojima Y, Sato N, Kurauchi T, Kamikaito O, U.S. Patent 4,889,885 (1989)
  15. Lee JD, Giannelis EP, Polym. Prepr., 38, 688 (1997)
  16. Choi MH, Chung IJ, Lee JD, Chem. Mater. (2000)
  17. Choi MH, Ph.D. thesis, KAIST, Korea (2001)
  18. Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O, J. Mater. Res., 8, 1174 (1993)
  19. Werstler DD, Polymer, 27, 750 (1986) 
  20. Maciel GE, Chung IS, Macromolecules, 17, 1081 (1984) 
  21. Rudin A, Fyfe CA, J. Appl. Polym. Sci., 28, 2611 (1983) 
  22. Karas M, Hillenkamp F, Anal. Chem., 60, 2299 (1988) 
  23. Pasch H, Rode K, Ghahary R, Braun D, Die Angew. Makromolekulare Chemie., 241, 95 (1996) 
  24. Carotenuto G, Nicolais L, J. Appl. Polym. Sci., 74(11), 2703 (1999) 
  25. Adabbo HE, Willams RJJ, J. Appl. Polym. Sci., 27, 1327 (1984)
  26. Lan T, Kaviratna PD, Pinnavaia TJ, J. Phys. Chem. Solids., 57, 1005 (1996) 
  27. Tyan HL, Liu YC, Wei KH, Polymer, 40(17), 4877 (1999)